
Specifica Tecnica

NearYou
Smart custom advertising platform

sevenbits.swe.unipd@gmail.com

SPECIFICA TECNICA v1.0.0

Registro modifiche

Versione Data Autore Verificatore Descrizione

1.0.0 2025-04-02
Leonardo
Trolese

Manuel Gusella
Approvazione documento per

PBG

0.2.4 2025-04-01 Riccardo Piva
Giovanni
Cristellon

Cambio immagine schemaDB e
piccole correzioni generali

0.2.3 2025-03-31 Federico Pivetta Alfredo Rubino
Miglioramento alla descrizione

dei design-patternG

0.2.2 2025-03-31 Alfredo Rubino Federico Pivetta
Aggiornamento sezione pattern

Adapter

0.2.1 2025-03-29 Federico Pivetta Riccardo Piva Correzioni generali

0.2.0 2025-03-28 Uncas Peruzzi Federico Pivetta
Refactoring Struttura, Aggiunti

SimulationService e
PositionToMessageService

0.1.10 2025-03-28 Riccardo Piva Federico Pivetta
Refactor sezione ClickhouseG e

GrafanaG architettura di
sistemaG

0.1.9 2025-03-28 Uncas Peruzzi Federico Pivetta
Aggiunte immagini servizi e

diagrammi UMLG

0.1.8 2025-03-22 Alfredo Rubino Uncas Peruzzi Aggiunto pattern Adapter

0.1.7 2025-03-22 Federico Pivetta Uncas Peruzzi
Ampliati i paragrafi per i
pattern Strategy e Factory

0.1.6 2025-03-21 Riccardo Piva Uncas Peruzzi
Sezione Integrazione
Architettura logica e

Architettura di sistemaG

0.1.5 2025-03-17 Riccardo Piva Alfredo Rubino Fix generali e miglioramenti

0.1.4 2025-03-16 Riccardo Piva Alfredo Rubino
Redazione generale macro

sezioni documento

0.1.3 2025-03-05 Alfredo Rubino Manuel Gusella
Redazione sottosezione

Strumenti e Servizi della sezione
Tecnologie

0.1.2 2025-03-05
Leonardo
Trolese

Manuel Gusella

Conclusione redazione
sottosezione Panoramica dei

Linguaggi della sezione
Tecnologie

0.1.1 2025-03-02
Leonardo
Trolese

Manuel Gusella
Redazione sottosezione

Panoramica dei Linguaggi della
sezione Tecnologie

0.1.0 2025-02-26
Leonardo
Trolese

Manuel Gusella Inizio redazione del documento

1

SPECIFICA TECNICA v1.0.0

Indice

1 Introduzione 5
1.1 Scopo del documento . 5
1.2 Glossario . 5
1.3 Riferimenti . 5

1.3.1 Riferimenti normativi . 5
1.3.2 Riferimenti informativi . 5

2 Tecnologie 6
2.1 Panoramica tecnologica . 6
2.2 Linguaggi di programmazione . 6

2.2.1 Python . 6
2.2.1.1 Specifiche . 6
2.2.1.2 Ruolo nel progetto . 6
2.2.1.3 Dipendenze . 7

2.2.2 SQL . 8
2.2.2.1 Specifiche . 8
2.2.2.2 Ruolo nel progetto . 8

2.2.3 Formati di interscambio dati . 8
2.2.3.1 YAML . 8
2.2.3.2 Specifiche . 8
2.2.3.3 Ruolo nel progetto . 8
2.2.3.4 JSON . 8
2.2.3.5 Specifiche . 9
2.2.3.6 Ruolo nel progetto . 9

2.3 Infrastruttura e servizi . 9
2.3.1 Apache ZooKeeper . 9

2.3.1.1 Specifiche . 9
2.3.1.2 Ruolo nel progetto . 9

2.3.2 Apache Kafka . 9
2.3.2.1 Specifiche . 9
2.3.2.2 Ruolo nel progetto . 9

2.3.3 Apache Flink . 10
2.3.3.1 Specifiche . 10
2.3.3.2 Ruolo nel progetto . 10

2.3.4 ClickHouse . 10
2.3.4.1 Specifiche . 10
2.3.4.2 Ruolo nel progetto . 10

2.3.5 Grafana . 10
2.3.5.1 Specifiche . 11
2.3.5.2 Ruolo nel progetto . 11

2.3.6 Docker . 11
2.3.6.1 Specifiche . 11
2.3.6.2 Ruolo nel progetto . 11

3 Architettura logica 11
3.1 Pattern di architettura-esagonale . 11
3.2 Servizi principali e loro componenti . 12

4 Architettura del Sistema 14
4.1 Panoramica architetturale . 14
4.2 K-Architecture: Event Streaming Platform . 14

4.2.1 Motivazioni della scelta architetturale . 14
4.2.2 Componenti principali . 14

4.3 Integrazione Architettura logica e Architettura di sistema 15
4.3.1 Descrizione . 15
4.3.2 Mappatura dei componenti . 16

4.4 Dataflow . 16

2

SPECIFICA TECNICA v1.0.0

4.5 Implementazione tecnica dei componenti principali . 18
4.5.1 DataSource - Simulation Service . 18

4.5.1.1 Diagramma della classi . 18
4.5.1.2 Design Pattern - Strategy Pattern . 19
4.5.1.3 Design Pattern - Factory Pattern . 21
4.5.1.4 Design Pattern - Adapter Pattern . 22

4.5.2 Classi, interfacce, metodi e attributi . 24
4.5.2.1 SensorSimulationAdministrator . 24
4.5.2.2 SensorSubject . 25
4.5.2.3 GpsSensor . 25
4.5.2.4 GeoPosition . 25
4.5.2.5 IPositionSimulationStrategy . 26
4.5.2.6 BycicleSimulationStrategy . 26
4.5.2.7 GraphWrapper . 27
4.5.2.8 SensorFactory . 27
4.5.2.9 UserSensorService . 27
4.5.2.10 IUserRepository . 28
4.5.2.11 UserRepository . 28
4.5.2.12 UserDTO . 28
4.5.2.13 ISensorRepository . 29
4.5.2.14 SensorRepository . 29
4.5.2.15 SensorDTO . 30
4.5.2.16 DatabaseConnection . 30
4.5.2.17 DatabaseConfigParameters . 30
4.5.2.18 IJsonSerializable . 31
4.5.2.19 PositionJsonAdapter . 31
4.5.2.20 PositionSender . 31
4.5.2.21 KafkaConfluentAdapter . 32
4.5.2.22 KafkaConfigParameters . 32

4.5.3 Streaming Layer - Apache Kafka . 33
4.5.3.1 Topic e partitioning . 33
4.5.3.2 Producer e Consumer . 33
4.5.3.3 Integrazione con Flink keyed stream . 33
4.5.3.4 Schema topic simulator position . 33
4.5.3.5 Schema message elaborated . 33
4.5.3.6 Kafka poisoning . 33

4.5.4 Processing Layer - PositionToMessageProcessor . 35
4.5.4.1 Apache Flink . 35
4.5.4.2 Diagrammi delle classi . 36
4.5.4.3 Design Pattern - Adapter Pattern . 38
4.5.4.4 Design Pattern - Strategy Pattern . 39
4.5.4.5 Classi, interfacce, metodi e attributi: . 40
4.5.4.6 FlinkJobManager . 40
4.5.4.7 IMessageWriter . 40
4.5.4.8 KafkaMessageWriter . 41
4.5.4.9 JsonRowSerializationAdapter . 41
4.5.4.10 KafkaWriterConfiguration . 42
4.5.4.11 IPositionReceiver . 42
4.5.4.12 KafkaPositionReceiver . 42
4.5.4.13 JsonRowDeserializationAdapter . 43
4.5.4.14 KafkaSourceConfiguration . 43
4.5.4.15 FilterMessageValidator . 43
4.5.4.16 PositionToMessageProcessor . 44
4.5.4.17 LLMService . 45
4.5.4.18 CustomPrompt . 45
4.5.4.19 StructuredResponseMessage . 45
4.5.4.20 GroqLLMService . 46
4.5.4.21 IActivityRepository . 46

3

SPECIFICA TECNICA v1.0.0

4.5.4.22 ClickhouseActivityRepository . 46
4.5.4.23 ActivityDTO . 47
4.5.4.24 IUserRepository . 47
4.5.4.25 ClickhouseUserRepository . 48
4.5.4.26 UserDTO . 48
4.5.4.27 IMessageRepository . 48
4.5.4.28 ClickhouseMessageRepository . 49
4.5.4.29 MessageDTO . 49
4.5.4.30 DatabaseConnection . 50
4.5.4.31 DatabaseConfigParameters . 50
4.5.4.32 IFlinkSerializable . 51
4.5.4.33 MessageSerializer . 51
4.5.4.34 FilterMessageAlreadyDisplayed . 51

4.5.5 ClickHouse . 52
4.5.5.1 Architettura MergeTree . 52
4.5.5.2 Schema del database . 53

4.5.6 Grafana . 58
4.5.6.1 Utenti . 58
4.5.6.2 Dashboards . 59
4.5.6.3 Dashboard generale . 59
4.5.6.4 Querying Clickhouse . 60
4.5.6.5 Variabili dashboard . 62
4.5.6.6 Trasformazioni e array interessi . 63
4.5.6.7 Connettore Clickhouse . 64
4.5.6.8 Provisioning automatico . 64

4.5.7 Best practices architetturali . 65
4.5.7.1 PEP8 - Stile di codifica Python . 65
4.5.7.2 Principi SOLID . 65
4.5.7.3 Dependency Injection . 67

4.6 Implementazione nel FlinkProcessor . 67

5 Architettura di deployment 70
5.1 Panoramica dell’infrastruttura . 70

5.1.1 Ambiente Docker dei Componenti Principali . 70
5.1.1.1 Zookeeper Service . 70
5.1.1.2 Kafka Service . 70
5.1.1.3 Kafdrop Service . 71
5.1.1.4 Grafana Service . 72
5.1.1.5 ClickHouse Service . 73
5.1.1.6 Position Simulator Service . 74
5.1.1.7 Flink Service . 74
5.1.1.8 Test Service . 75

5.1.2 Dipendenze tra componenti . 76
5.2 Continuous Integration . 77
5.3 Vantaggi dell’architettura containerizzata . 78
5.4 Comunicazione tra container . 79
5.5 Orchestrazione e gestione . 79
5.6 Evoluzione futura . 79

6 Stato dei requisiti funzionali 80
6.1 Riepilogo dei requisiti . 80
6.2 Tabella dei requisiti funzionali . 80
6.3 Stato di implementazione . 83
6.4 Riepilogo e Conclusioni . 84

4

SPECIFICA TECNICA v1.0.0

Elenco delle figure

1 Architettura esagonale del SimulationService . 12
2 Architettura esagonale del PositionToMessageService . 13
3 Diagramma dell’architettura di SistemaG . 15
4 Flusso dei dati nell’architettura . 16
5 SimulationService Core . 18
6 Factory di Sensori . 19
7 PositionToMessageProcessorService InBound/OutBound Ports con il BrokerG 37
8 PositionToMessageProcessorService OutBound Ports . 38
9 Schema del databaseG . 53
10 Stato dei requisiti funzionali obbligatori . 83
11 Stato dei requisiti funzionali totali . 84

5

SPECIFICA TECNICA v1.0.0

Elenco delle tabelle

2 Mappatura dei componenti tra Kappa-architectureG e Architettura-esagonaleG 16
4 Stato di implementazione dei requisiti funzionali . 83

6

SPECIFICA TECNICA v1.0.0

1 Introduzione

1.1 Scopo del documento

Il presente documento si propone come una risorsa completa per la comprensione degli aspetti tecnici e
progettuali della piattaforma ”NearYou”, dedicata alla creazione di soluzioni di advertising personalizzato
tramite intelligenza artificiale. L’obiettivo principale è fornire una descrizione dettagliata dell’architettura
implementativa e di deployment, illustrando le tecnologie adottate e le motivazioni alla base delle scelte
progettuali.
Nel contesto dell’architettura implementativa, il documento analizza nel dettaglio i moduli principali del
sistemaG, i design-patternG utilizzati. Saranno inclusi diagrammi delle classi, e una spiegazione dettagli-
ata dei design-patternG utilizzati e delle motivazioni di queste scelte.
Gli obiettivi di questo documento sono: motivare le decisioni architetturali, fungere da guida per lo
sviluppo della piattaforma, e garantire la piena tracciabilità e copertura dei requisiti definiti nel docu-
mento di Analisi dei Requisiti v2.0.0.
In sintesi, il documento intende essere un punto di riferimento essenziale per tutti gli attori coinvolti
nel ciclo-di-vitaG del progettoG, offrendo una visione chiara e strutturata delle fondamenta tecniche che
sorreggono NearYou e delle logiche che ne determinano il funzionamento.

1.2 Glossario

Con l’intento di evitare ambiguità interpretative del linguaggio utilizzato, viene fornito un Glossario che si
occupa di esplicitare il significato dei termini che riguardano il contesto del ProgettoG. I termini presenti
nel glossario sono contrassegnati con una G a pedice : TermineG.
I termini composti, oltre alla G a pedice, saranno uniti da un ”-” come segue: termine-compostoG.
Le definizioni sono presenti nell’apposito documento Glossario v2.0.0.pdf.

1.3 Riferimenti

1.3.1 Riferimenti normativi

- Regolamento del ProgettoG didattico
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/PD1.pdf

(Consultato: 2025-02-10).

- CapitolatoG C4 - NearYou - Smart custom advertising platform
https://www.math.unipd.it/~tullio/IS-1/2024/Progetto/C4p.pdf

(Consultato: 2025-02-10).

- Norme di Progetto v2.0.0

1.3.2 Riferimenti informativi

- Glossario v2.0.0

- Analisi dei Requisiti v2.0.0

- Analisi-dei-RequisitiG - SWE 2024-25
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/T05.pdf

(Consultato: 2025-02-10).

- Dependency Injection - SWE 2024-25
https://www.math.unipd.it/~rcardin/swea/2022/Design%20Pattern%20Architetturali%20-%

20Dependency%20Injection.pdf

(Consultato: 2025-02-26).

- Design-patternG Creazionali - SWE 2024-25
https://www.math.unipd.it/~rcardin/swea/2022/Design%20Pattern%20Creazionali.pdf

(Consultato: 2025-02-26).

7

https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/PD1.pdf
https://www.math.unipd.it/~tullio/IS-1/2024/Progetto/C4p.pdf
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/T05.pdf
https://www.math.unipd.it/~rcardin/swea/2022/Design%20Pattern%20Architetturali%20-%20Dependency%20Injection.pdf
https://www.math.unipd.it/~rcardin/swea/2022/Design%20Pattern%20Architetturali%20-%20Dependency%20Injection.pdf
https://www.math.unipd.it/~rcardin/swea/2022/Design%20Pattern%20Creazionali.pdf

SPECIFICA TECNICA v1.0.0

- Design-patternG Strutturali - SWE 2024-25
https://www.math.unipd.it/~rcardin/swea/2022/Design%20Pattern%20Strutturali.pdf

(Consultato: 2025-02-26).

- Software Architecture Patterns - SWE 2024-25
https://www.math.unipd.it/~rcardin/swea/2022/Software%20Architecture%20Patterns.pdf

(Consultato: 2025-02-26).

- Verbali Interni

- Verbali Esterni

2 Tecnologie

Questa sezione descrive le tecnologie utilizzate per lo sviluppo del sistemaG NearYou, presentando una
panoramica degli strumenti, dei linguaggi e dei servizi impiegati, con le motivazioni alla base delle scelte
effettuate.

2.1 Panoramica tecnologica

Il sistemaG NearYou si basa su un’architettura a microservizi event-driven che utilizza diverse tecnologie
integrate:

� Python: Linguaggio principale per lo sviluppo dei componenti del sistemaG;

� Apache KafkaG: SistemaG di messaggistica distribuito per la comunicazione tra componenti;

� Apache FlinkG: FrameworkG di elaborazione dati in tempo reale;

� ClickHouse: DatabaseG colonnare ad alte prestazioni;

� Grafana: Piattaforma di visualizzazione dei dati in tempo reale;

� Docker: SistemaG di containerizzazione per il deployment.

2.2 Linguaggi di programmazione

2.2.1 Python

Linguaggio di programmazione ad alto livello, interpretato e orientato agli oggetti, scelto per la sua
leggibilità, la vasta libreria standard e il ricco ecosistema di frameworkG disponibili, particolarmente
adatto allo sviluppo rapido di applicazioni.

2.2.1.1 Specifiche

� Versione: 3.12.2;

� Documentazione: https://docs.python.org/ (Consultato: 2025-03-02).

2.2.1.2 Ruolo nel progetto
Nel contesto di NearYou, PythonG viene impiegato per:

- Sviluppo di un simulatore per gli spostamenti di più utenti;

- Implementazione della logica di elaborazione dati;

- Interazione con i servizi esterni e le APIG;

- Gestione della persistenza dei dati;

- Applicazione degli algoritmi di selezione dei PoIG rilevanti.

8

https://www.math.unipd.it/~rcardin/swea/2022/Design%20Pattern%20Strutturali.pdf
https://www.math.unipd.it/~rcardin/swea/2022/Software%20Architecture%20Patterns.pdf
https://docs.python.org/

SPECIFICA TECNICA v1.0.0

2.2.1.3 Dipendenze

- ClickHouse Connect:

– Descrizione: Libreria client per l’interazione con il databaseG ClickhouseG, permettendo
operazioni di queryG e gestione dei dati;

– Versione: 0.6.8;

– Documentazione: https://clickhouse.com/docs/integrations/python (Consultato: 2025-
03-02).

- PyFlink:

– Descrizione: APIG PythonG di Apache FlinkG per l’elaborazione di flussi di dati distribuiti,
sia in modalità batch che streaming;

– Versione: 1.18.1;

– Documentazione: https://pyflink.readthedocs.io/en/main/getting_started/index.
html (Consultato: 2025-03-02).

- LangChain:

– Descrizione: FrameworkG per lo sviluppo di applicazioni basate su modelli linguistici, con-
sentendo di orchestrare prompt e integrare fonti di dati esterne;

– Versione: 0.1.12;

– Documentazione: https://python.langchain.com/docs/introduction/ (Consultato: 2025-
03-02).

- Groq:

– Descrizione: Client PythonG per l’API GroqG, utilizzato per la generazione di contenuti
tramite LLMG;

– Versione: 0.4.2;

– Documentazione: https://console.groq.com/docs/libraries (Consultato: 2025-03-02).

- Confluent KafkaG:

– Descrizione: Libreria per l’interazione con Apache KafkaG, utilizzata per la pubblicazione e
sottoscrizione di messaggi;

– Versione: 2.8.0;

– Documentazione: https://docs.confluent.io/kafka/overview.html (Consultato: 2025-
03-02).

- GeoPy:

– Descrizione: Libreria per operazioni geospaziali e calcolo delle distanze;

– Versione: 2.4.1;

– Documentazione: https://geopy.readthedocs.io/en/stable/index.html (Consultato:
2025-03-02).

- OSMnx:

– Descrizione: Libreria per scaricare e analizzare reti stradali da OpenStreetMap, utilizzata
per simulare percorsi realistici;

– Versione: 1.9.1;

– Documentazione: https://osmnx.readthedocs.io/en/stable/ (Consultato: 2025-03-02).

- Faker:

– Descrizione: Libreria per la generazione di dati realistici per testG;

9

https://clickhouse.com/docs/integrations/python
https://pyflink.readthedocs.io/en/main/getting_started/index.html
https://pyflink.readthedocs.io/en/main/getting_started/index.html
https://python.langchain.com/docs/introduction/
https://console.groq.com/docs/libraries
https://docs.confluent.io/kafka/overview.html
https://geopy.readthedocs.io/en/stable/index.html
https://osmnx.readthedocs.io/en/stable/

SPECIFICA TECNICA v1.0.0

– Versione: 24.1.0;

– Documentazione: https://faker.readthedocs.io/en/master/ (Consultato: 2025-03-02).

- Pylint:

– Descrizione: Strumento di analisi statica del codice PythonG;

– Versione: 3.0.3;

– Documentazione: https://pylint.pycqa.org/en/latest/index.html (Consultato: 2025-
03-03).

- Pytest:

– Descrizione: FrameworkG per testG automatizzati;

– Versione: 7.4.3;

– Documentazione: https://docs.pytest.org/en/stable/ (Consultato: 2025-03-03).

2.2.2 SQL

Linguaggio standard per l’interrogazione e la manipolazione di databaseG relazionali, utilizzato nel con-
testo di ClickhouseG per definire lo schema del databaseG e per interrogare i dati.

2.2.2.1 Specifiche

� Dialetto: ClickhouseG SQLG;

� Documentazione: https://clickhouse.com/docs/sql-reference (Consultato: 2025-03-05).

2.2.2.2 Ruolo nel progetto
In NearYou, SQLG viene utilizzato per:

- Definizione dello schema del databaseG;

- Interrogazione dei dati per la visualizzazione;

- Creazione di queryG analitiche per l’identificazione delle relazioni spaziali.

2.2.3 Formati di interscambio dati

2.2.3.1 YAML
YAML è un formato di serializzazione dei dati human-readable basato sull’indentazione, utilizzato prin-
cipalmente per file di configurazione.

2.2.3.2 Specifiche

� Versione: 1.2;

� Documentazione: https://yaml.org/spec/1.2.2/ (Consultato: 2025-03-05).

2.2.3.3 Ruolo nel progetto

- Configurazione dell’ambiente DockerG;

- Workflow CI/CD;

- Configurazione dei servizi.

2.2.3.4 JSON
JSONG è un formato di interscambio dati leggero e indipendente dal linguaggio, basato su coppie chiave-
valore.

10

https://faker.readthedocs.io/en/master/
https://pylint.pycqa.org/en/latest/index.html
https://docs.pytest.org/en/stable/
https://clickhouse.com/docs/sql-reference
https://yaml.org/spec/1.2.2/

SPECIFICA TECNICA v1.0.0

2.2.3.5 Specifiche

� Versione: 2.0;

� Documentazione: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/JSON (Consultato: 2025-03-02).

2.2.3.6 Ruolo nel progetto

- Serializzazione dei messaggi scambiati tra i componenti;

- Configurazione delle dashboardG di visualizzazione;

- Comunicazione con i servizi APIG esterni.

2.3 Infrastruttura e servizi

2.3.1 Apache ZooKeeper

Servizio di coordinamento distribuito che fornisce primitive per la gestione della configurazione, la sin-
cronizzazione e la denominazione dei nodi in sistemi distribuiti.

2.3.1.1 Specifiche

� Versione: 7.6.0;

� Documentazione: https://zookeeper.apache.org/documentation.html (Consultato: 2025-
03-05).

2.3.1.2 Ruolo nel progetto
In NearYou, ZooKeeper è utilizzato per:

- Gestione dei brokerG KafkaG e delle loro configurazioni;

- Monitoraggio dello stato dei nodi nel sistemaG distribuito;

- Coordinamento delle operazioni distribuite tra i componenti;

- Gestione delle elezioni dei leader per le partizioni KafkaG.

2.3.2 Apache Kafka

SistemaG di messaggistica distribuita in grado di gestire flussi di dati in tempo reale, caratterizzato da
elevata scalabilità, affidabilità e tolleranza ai guasti.

2.3.2.1 Specifiche

� Versione: 7.6.0;

� Documentazione: https://kafka.apache.org/documentation/ (Consultato: 2025-03-05).

2.3.2.2 Ruolo nel progetto
In NearYou, KafkaG rappresenta il backbone della comunicazione tra componenti:

- Gestione del flusso di dati di posizione dagli utenti;

- Trasferimento dei messaggi pubblicitari generati;

- Garanzia di consegna delle informazioni anche in caso di guasti;

- Supporto al pattern event-driven dell’architettura.

11

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://zookeeper.apache.org/documentation.html
https://kafka.apache.org/documentation/

SPECIFICA TECNICA v1.0.0

2.3.3 Apache Flink

FrameworkG di elaborazione dati stream e batch distribuito, caratterizzato da bassa latenza, elevato
throughput e gestione efficiente dello stato.

2.3.3.1 Specifiche

� Versione: 1.20.0;

� Documentazione: https://nightlies.apache.org/flink/flink-docs-stable/ (Consultato:
2025-03-05).

2.3.3.2 Ruolo nel progetto
In NearYou, FlinkG è utilizzato per:

- Elaborazione in tempo reale dei dati di posizione;

- Calcolo della prossimità tra utenti e punti di interesse tramite clickhouseG;

- Orchestrazione del processoG di generazione dei messaggi pubblicitari tramite LLMG;

- Configurazione dei job per l’elaborazione dei dati.

2.3.4 ClickHouse

DatabaseG colonnare progettato per l’analisi OLAP (OnLine Analytical Processing, tecnica che consente
di interrogare ed esaminare rapidamente grandi volumi di dati da diverse prospettive) che permette agli
utenti di generare report analitici utilizzando queryG SQLG in tempo reale. La struttura è ottimizzata
per aggregazioni e interrogazioni, consentendo operazioni complesse su dataset estesi in tempi brevissimi.
Le caratteristiche principali di ClickhouseG sono:

- Architettura colonnare per interrogazioni analitiche efficienti;

- Supporto a funzioni geospaziali per calcoli di distanza;

- Supporto di dati time series;

- Integrazione nativa con KafkaG per l’ingestione di dati;

- Scalabilità orizzontale per gestire grandi volumi di dati.

2.3.4.1 Specifiche

� Versione: 24.10;

� Documentazione: https://clickhouse.com/docs/en/ (Consultato: 2025-03-05).

2.3.4.2 Ruolo nel progetto
In NearYou, ClickhouseG è utilizzato per:

- Archiviazione dei dati di posizione degli utenti;

- Rilevamento della prossimità tra utenti e punti di interesse;

- Memorizzazione delle informazioni sui punti di interesse;

- Storicizzazione dei messaggi pubblicitari generati;

- Supporto alle queryG analitiche per la visualizzazione.

2.3.5 Grafana

Piattaforma open-source per la visualizzazione e il monitoraggio dei dati, con supporto per diverse fonti
di dati e creazione di dashboardG interattive.

12

https://nightlies.apache.org/flink/flink-docs-stable/
https://clickhouse.com/docs/en/

SPECIFICA TECNICA v1.0.0

2.3.5.1 Specifiche

� Versione: 11.5.2;

� Documentazione: https://grafana.com/docs/ (Consultato: 2025-03-05).

2.3.5.2 Ruolo nel progetto
In NearYou, GrafanaG è utilizzato per:

- Visualizzazione in tempo reale delle posizioni degli utenti;

- Rappresentazione dei punti di interesse sulla mappa;

- Monitoraggio dei messaggi pubblicitari generati;

- Creazione di dashboardG interattive per l’analisi dei dati.

2.3.6 Docker

Piattaforma di containerizzazione che consente di impacchettare applicazioni con le loro dipendenze in
unità standardizzate chiamate containerG.

2.3.6.1 Specifiche

� Versione: 28.0.1;

� Documentazione: https://docs.docker.com/ (Consultato: 2025-03-05).

2.3.6.2 Ruolo nel progetto
In NearYou, DockerG è utilizzato per:

- Containerizzazione dei diversi componenti del sistemaG;

- Creazione di un ambiente di sviluppo e deployment coerente;

- Semplificazione della distribuzione dell’applicazione;

- Isolamento dei servizi e gestione delle dipendenze.

3 Architettura logica

La logica del progettoG adotta un approccio esagonale incentrato sugli eventi, con l’obiettivo di separare
chiaramente la logica di dominio dai servizi esterni. Al centro si trova il core esagonale, che contiene le
regole per la gestione del business legato alla generazione di messaggi pubblicitari personalizzati. Questo
nucleo è isolato da sistemi KafkaG, ClickhouseG e APIG esterne, tramite porte (interface) e adattatori
(infrastructure), favorendo una netta suddivisione delle responsabilità.

3.1 Pattern di architettura-esagonale

Il pattern esagonale è stato scelto per la sua capacità di disaccoppiare la logica di business dalle tecnologie
specifiche. Questa separazione consente una maggiore manutenibilità e testabilità del sistemaG, oltre a
facilitare l’evoluzione tecnologica senza impattare sul nucleo funzionale.
Nell’architettura esagonale implementata, possiamo distinguere:

- Core domain: Il nucleo centrale che rappresenta le entità e la logica di business del sistemaG. La
logica di business, ha una o più porte;

- Porte (Ports): Una porta definisce un set di operazioni ed il modo con il quale la logica si inter-
faccia con la parte esterna, solitamente sono implementate tramite un’Interfaccia. Si distinguono
in:

13

https://grafana.com/docs/
https://docs.docker.com/

SPECIFICA TECNICA v1.0.0

. Inbound ports: Interfacce che espongono le funzionalità del dominio verso l’esterno;

. Outbound ports: Interfacce che definiscono come il dominio può utilizzare servizi esterni.

- Adapters: Implementazioni concrete delle porte che collegano il dominio alle tecnologie specifiche:

. Inbound adapters: Adattatori che convertono le richieste esterne nel formato atteso dal
dominio;

. Outbound adapters: Adattatori che implementano le interfacce di uscita collegandole a
tecnologie specifiche.

3.2 Servizi principali e loro componenti

NearYou implementa due servizi principali, entrambi progettati secondo il pattern esagonale:

- Generatore di posizioni GPS:

Business Logic

Repository
Interface

Messagging
Interface

Message Broker
Database

User
Repository

Kafka
Confluent
Adapter

Outbound Port

Outbound Adapter Outbound Port

Outbound Adapter

Figure 1: Architettura esagonale del SimulationService

. Core domain: Implementa la logica di simulazione del movimento di utenti nello spazio,
sfruttando percorsi reali e dinamiche di movimento implementate da diverse strategie. Nella
logica di business troviamo infatti il modo in cui avviene la creazione dei vari sensori nel
sistemaG in SensorFactory e il modo in cui vengono simulate le posizioni dei sensori in
IPositionSimulationStrategy;

. Inbound ports: Non dispone di inbound ports in quanto il modulo si occupa della mera
creazione di dati fittizi;

. Outbound ports: È necessario che il modulo si interfacci con l’esterno: con il databaseG, per
garantire una corretta associazione Sensore Simulato - Utente nel sistemaG, e con un’interfaccia
di messaggistica, per pubblicare i dati prodotti dalla logica di business. Nel nostro sistemaG, le
interfacce sono IUserRepository, ISensorRepository e la classe astratta PositionSender;

. Adapters: Implementa adattatori come ClickhouseUserRepository e
ClickhouseSensorRepository che implementano le rispettive porte e permettono di
eseguire le operazioni di accesso al databaseG. Per quanto riguarda la scrittura dei messaggi,
l’adapter associato è KafkaConfluentAdapter che sfrutta la tecnologia di message brokering
scelta 2.3.2.

14

SPECIFICA TECNICA v1.0.0

- Elaboratore di posizioni / Generatore di messaggi:

Business Logic
Repository
Interfaces Messagging

Interface

Message Broker

Database

User
Repository

Kafka
Message

Writer

LLMService

GroqLLM
Service

Simulation
Service

Kafka
Position
Receiver

Inbound Port

Activity
Repository

Message
Repository

Outbound Ports

Outbound Adapters

 Inbound Adapter

Figure 2: Architettura esagonale del PositionToMessageService

. Core domain: Contiene la logica di identificazione della prossimità e generazione di messaggi
pubblicitari. Questa logica permette di elaborare i dati ricevuti tramite la inbound port e
tramite il sistemaG di stream-processingG 2.3.3 , consumandoli come datastream per PoIG
effettuare operazioni di Filter e Mapping su di essi;

. Inbound ports: Permette di ricevere i dati che andranno PoIG elaborati, interfaccia chiamata
IPositionReceiver;

. Outbound ports: Comprende interfacce verso i diversi repositoryG necessari alla logica
(IUserRepository, IActivityRepository,IMessageRepository), servizi esterni necessari per
l’elaborazione dei dati come (LLMService) e publisher di messaggi (IMessageWriter);

. Adapters: Implementa adattatori per tecnologie specifiche, come KafkaPositionReceiver,
ClickHouseActivityAdapter e GroqLLMAdapter.

Questo approccio garantisce che ogni componente abbia responsabilità chiaramente definite e che il nucleo
di business rimanga indipendente dalle tecnologie utilizzate per l’implementazione.

15

SPECIFICA TECNICA v1.0.0

4 Architettura del Sistema

4.1 Panoramica architetturale

L’architettura del progettoG si basa su un insieme di microservizi event-driven che comunicano fra di
loro mediante KafkaG. I dati di posizione vengono raccolti in tempo reale, elaborati per verificare la
prossimità dei punti d’interesse ed eventualmente sottoporli ad un servizio LLMG che genera messaggi
pubblicitari personalizzati per l’utente in base al tipo della attività.

4.2 K-Architecture: Event Streaming Platform

La Kappa-architectureG è stata selezionata come architettura di riferimento per il progettoG in virtù della
sua capacità di unificare l’elaborazione di dati in tempo reale e batch all’interno di un unico stack tecno-
logico, garantendo flessibilità, semplicità operativa e scalabilità. Il vantaggio principale è l’eliminazione
della duplicazione di tecnologie e pipeline tipica della Lambda Architecture. In quest’ultima, due sistemi
separati (uno per il batch e uno per lo streaming) richiedono codice, logiche e infrastrutture distinte,
aumentando i costi di sviluppo,

4.2.1 Motivazioni della scelta architetturale

� Vantaggi per l’elaborazione in tempo reale: Tra i vantaggi per l’elaborazione in tempo reale
c’è la capacità di gestire flussi di dati continui senza ritardi significativi;

� Tecniche di riduzione della latenza: La riduzione della latenza è garantita dalla gestione dei
dati in tempo reale, senza la necessità di processi batch;

� Benefici sul disaccoppiamento: Tra i benefici del disaccoppiamento c’è la possibilità di svilup-
pare e scalare indipendentemente i componenti del sistemaG, garantendo una maggiore flessibilità;

� Ottimizzazione del codebase: La semplificazione della pipeline di dati permette di ridurre la
complessità del codice e di semplificare la manutenzione.

4.2.2 Componenti principali

Il progettoG si suddivide in cinque componenti principali, ognuno dei quali svolge un ruolo specifico
nell’architettura complessiva:

- Data Source;

- Straming Layer;

- Processing Layer;

- Storage Layer;

- Data Visualization.

16

SPECIFICA TECNICA v1.0.0

SimulationService

PositionToMessageProcessor

DATA SOURCE

Processing Layer

Apache Kafka

Streaming Layer
Clickhouse Database

storage Layer
Grafana

data visualization

Confluent Kafka API Kafka Table Engine Grafana Clickhouse Plugin

PyFLink

DOCKER

Figure 3: Diagramma dell’architettura di SistemaG

Descrizione dei componenti dell’architettura:

� Data Source: Il ruolo di questo componente è coperto dal SimulationService, che si occupa della
generazione delle posizioni appartenenti a percorsi realisti;

� Streaming Layer: Basato su Apache KafkaG, gestisce la comunicazione asincrona tra i mi-
croservizi, garantendo la scalabilità e la resilienza del sistemaG grazie alla gestione dei topicG e
delle partizioni con le chiavi che corrispondono all’id del sensore per facilitare l’elaborazione in
maniera parallela. Infine KafkaG è responsabile della storicizzazione dei log nelle apposite entry del
databaseG ClickhouseG;

� Elaborazione dei dati: Implementato con il PositionToMessageService che sfrutta le funzionalità
Apache FlinkG, elabora i dati valutando la prossimità dei punti d’interesse e interagendo con l’LLM
per generare annunci personalizzati;

� Storage: Supportato dal databaseG ClickhouseG, memorizza i dati in tabelle colonnari ad alte
prestazioni, consentendo queryG analitiche rapide grazie all’ottimizzazione per letture intensive;

� Visualizzazione: Basato su GrafanaG, costituisce una soluzione di visualizzazione dei dati su una
mappa e l’integrazione di tale interfaccia con i dati del datasource avviene tramite delle queryG.
Sfrutta inoltre il connettore nativo di ClickhouseG, permettendo l’integrazione e le queryG in tempo
reale delle informazioni.

4.3 Integrazione Architettura logica e Architettura di sistema

4.3.1 Descrizione

Le due architetture, la Kappa-architectureG e l’architettura esagonale, rappresentano due prospettive
differenti dello stesso sistemaG. Mentre la Kappa-architectureG si riferisce all’implementazione concreta
del codice e al flusso continuo di dati in tempo reale, l’architettura esagonale evidenzia la separazione
logica tra il core di business e le interfacce esterne. Nonostante l’approccio e la terminologia differiscano,
i componenti del sistemaG sono gli stessi condivisi fra le due architetture e possono quindi essere mappati
fra di loro. Ovviamente, il layer di Visualizzazione non rientra nell’architettura esagonale, poiché non è
un componente realizzato dal gruppo, ma si interfaccia solamente con il databaseG ClickhouseG per la
parte di interfaccia utente.

17

SPECIFICA TECNICA v1.0.0

4.3.2 Mappatura dei componenti

Kappa Architecture
Architettura
Esagonale

Ruolo nel Progetto

Log Immutabile
SimulationService
Outbound Port

Il servizio che si occupa di creare le
posizioni simulate, invia queste ultime
tramite l’apposita outbound port,
come uno stream di dati persistente,
partizionato per utente e ordinato
temporalmente, implementato con
ApacheKafka, usando il topicG
SimulatorPosition.

Stream-processingG
Engine

PositionToMessageService
Inbound Port/Core Logic

Il servizio riceve le posizioni tramite
l’apposita Inbound Port, elabora lo
stream in tempo reale, parallelamente
per ogni singolo utente

Viste Materializzate
PositionToMessageService

Outbound Port

Si occupa di prelevare i dati dello
stream elaborato e storicizzarli
nell’apposito databaseG ClickhouseG
ottimizzato per rispondere alle queryG
dell’interfaccia grafica in maniera
efficiente

Table 2: Mappatura dei componenti tra Kappa-architectureG e Architettura-esagonaleG

4.4 Dataflow

SensorGPS

KafkaTopic

Serialized JSON Data

Flink Processor

Serialized JSON Data

Kafka Table Engine Materialized View Merge Tree

Query Grafana Web Interface

Figure 4: Flusso dei dati nell’architettura

Il flusso dei dati nell’architettura di sistemaG segue un percorsoG ben definito, garantendo la separazione
tra la logica di business e le tecnologie di implementazione. Di seguito viene descritto il flusso di dati
end-to-end:

1. Generazione delle posizioni:

. Il core domain del SimulationService crea oggetti GeoPosition che rappresentano le coordinate
degli utenti;

. Questi oggetti vengono inviati all’esterno attraverso l’outbound port PositionSender;

. L’adapter KafkaConfluentAdapter serializza i dati in formato JSONG e costruisce un istanza
di un Producer che pubblicherà i dati sul topicG KafkaG SimulatorPosition.

2. Consumo delle posizioni:

. L’inbound adapter KafkaPositionReceiver del servizio PositionToMessageService istanzia
una KafkaSource collegata al topicG KafkaG SimulatorPosition;

18

SPECIFICA TECNICA v1.0.0

. I payload ricevuti vengono deserializzati secondo uno schema ben definito in
JsonRowDeserializationSchema e convertiti in oggetti di dominio UserPosition;

. L’istanza che implementa IPositionReceiver viene collegata al datastream nella logica di
business del servizio di elaborazione che elaborerà le posizioni ricevute in input.

3. Elaborazione e generazione di messaggi:

. Il core domain applica una funzione di Filter, con la classe FilterMessageValidator, al
datastream in input per validare i dati ricevuti in input e limitare il KafkaPoisoning (scelta
esplicata in 4.5.3.6)

. Il core domain valuta la prossimità dell’utente rispetto ai punti di interesse, utilizzando
l’outbound port IUserRepository per ottenere le informazioni specifiche dell’utente colle-
gato alla posizione ricevuta in input, utilizza PoIG IActivityRepository per recuperare le
attività nelle vicinanze dell’utente con gli interessi condivisi;

. In caso di rilevamento di un punto di interesse valido in prossimità, il core domain
PositionToMessageProcessor crea un prompt per PoIG richiedere un messaggio personaliz-
zato tramite l’outbound port LLMService;

. L’adapter GroqLLMService comunica con il servizio LLMG esterno e restituisce il messaggio
generato;

. Viene applicata un’altra funzione di Filter, implementata in FilterMessageAlreadyDisplayed,
per prevenire la duplicazione di messaggi generati per il singolo utente, necessario per rispettare
i requisiti stabiliti;

. Il messaggio personalizzato viene incapsulato in un oggetto MessageDTO del dominio per facil-
itarne la serializzazione.

4. Pubblicazione del messaggio pubblicitario:

. L’oggetto MessageDTO viene passato all’outbound port IMessageWriter;

. L’adapter KafkaMessageWriter serializza il messaggio secondo uno schema ben definito in
JsonRowSerializationSchema e lo pubblica sul topicG KafkaG MessageElaborated.

5. Persistenza e visualizzazione:

. ClickhouseG, attraverso il connettore KafkaG nativo, in particolare sfruttando le tecnologie
Kafka Table Engine ⇒ Materialized View ⇒ Merge Tree consuma e archivia nella apposita
tabella i messaggi dal topicG messageTable;

. GrafanaG interroga ClickhouseG tramite l’apposito plugin e il sistemaG di queryG, per recu-
perare e visualizzare i dati in tempo reale attraverso dashboardG interattive.

Il flusso dei dati è progettato per essere asincrono, garantendo la scalabilità e la resilienza del sistemaG.
Ogni componente può funzionare indipendentemente, con KafkaG che funge da buffer di messaggi affid-
abile tra i vari stadi del processoG.
Gli adattatori si occupano d’interfacciarsi con l’esterno: il simulatore di posizioni produce eventi JSONG

su KafkaG, successivamente elaborati da FlinkG per definire la prossimità ai punti di interesse e gestire i
dati necessari alla logica di dominio. Qualora sia richiesta la generazione di contenuti, un LLMG esterno
crea i messaggi personalizzati che confluiscono nel dominio. La persistenza e la consultazione storica
avvengono tramite ClickhouseG, mentre GrafanaG rende immediatamente disponibili tali informazioni
agli utenti.
Questo utilizzo di KafkaG come backbone di comunicazione sostiene la natura asincrona ed event-driven
del sistemaG, svincolando i componenti gli uni dagli altri. Grazie a questa separazione in porte e adat-
tatori, l’architettura risulta flessibile, manutenibile e facile da testare: ogni modifica alla periferia può
essere gestita senza impattare la logica di dominio, preservando nel contempo la coerenza e la semplicità
di estensione all’intero sistemaG.

19

SPECIFICA TECNICA v1.0.0

4.5 Implementazione tecnica dei componenti principali

4.5.1 DataSource - Simulation Service

Il SimulationModule è una componente architettonica progettata per simulare dati di posizionamento
geografico in un ecosistema più ampio di gestione dati. Questo modulo rappresenta l’applicazione pratica
dell’integrazione tra i principi della Kappa-architectureG e dell’Architettura Esagonale.
Il sistemaG opera attraverso tre fasi fondamentali. Inizialmente, prepara l’ambiente di simulazione ac-
quisendo le risorse necessarie e configurando il modello geografico. In questa parte vengono creati i sensori
che sono associati uno ad uno con gli utenti gia registrati nel sistemaG. Successivamente, viene attivato
il processoG di simulazione che genera flussi di dati rappresentanti movimenti virtuali attraverso percorsi
realistici. Infine, questi dati vengono incanalati verso il sistemaG di streaming centrale.
La simulazione crea un flusso continuo di eventi che rispecchia scenari di movimento reali. Questo
approccio event-driven si allinea perfettamente con la filosofia Kappa, dove tutti i dati sono modellati
come flussi di eventi, mentre la struttura interna rispetta i principi dell’Architettura Esagonale.

4.5.1.1 Diagramma della classi

Figure 5: SimulationService Core

20

SPECIFICA TECNICA v1.0.0

Figure 6: Factory di Sensori

4.5.1.2 Design Pattern - Strategy Pattern

4.5.1.2.1 Motivazioni e studio del design pattern
Il pattern Strategy è stato adottato per incrementare la flessibilità nella gestione di diverse modalità
operative del sistemaG. Questa scelta architetturale permette di definire un’interfaccia comune per tutte
le strategie implementate, consentendo di modificare il comportamento del sistemaG selezionando una
strategia specifica. Tale approccio aderisce al principio Open/Closed, agevolando l’aggiunta di nuove
strategie senza intervenire su quelle esistenti.

4.5.1.2.2 Implementazione del design pattern
L’implementazione del pattern Strategy avviene tramite la creazione di:

1. Un’interfaccia che definisce i metodi comuni necessari per implementare diverse strategie per una
specifica funzionalità;

2. Una o più classi concrete che implementano tale interfaccia, fornendo algoritmi specifici per realiz-
zare la funzionalità in diversi modi.

4.5.1.2.3 Utilizzo
L’integrazione del pattern Strategy disaccoppia la logica specifica delle funzionalità dal codice client che
le invoca, semplificando l’estensibilità del sistemaG. La possibilità di scegliere le strategie a runtime
permette di adattare dinamicamente il comportamento dell’applicazione in base al contesto. Ciò si rivela

21

SPECIFICA TECNICA v1.0.0

particolarmente vantaggioso in scenari che richiedono la sperimentazione o l’utilizzo di diverse modalità
operative senza necessità di modifiche al nucleo del codice.

4.5.1.2.4 Integrazione del pattern
Il nostro sistemaG adotta il pattern Strategy per la simulazione della posizione, definendo l’interfaccia
IPositionSimulationStrategy. Questa scelta architetturale consente l’implementazione di diverse
logiche di simulazione, garantendo flessibilità per molteplici scenari di utilizzo.

1 class IPositionSimulationStrategy(ABC):

2 @abstractmethod

3 def get_route(self):

4 pass

5

6 @abstractmethod

7 def get_delta_time(self) -> float:

8 pass

9

10 @abstractmethod

11 def get_speed(self) -> float:

12 pass

Il funzionamento dei metodi della IPositionSimulationStrategy è il seguente:

� get route(...): Metodo astratto che deve restituire la sequenza di coordinate geografiche che
rappresentano il percorsoG simulato;

� get delta time(...) -> float: Metodo astratto che deve restituire l’intervallo di tempo (in
secondi) tra due posizioni consecutive nella simulazione;

� get speed(...) -> float: Metodo astratto che deve restituire la velocità (in metri al secondo)
della simulazione.

1 class BycicleSimulationStrategy(IPositionSimulationStrategy):

2

3 def __init__(self, graph_istance: GraphWrapper):

4 self.__bycicle_speed_approximated = 15

5 self.__delta_time_between_positions = 21

6 self.__graph_istance = graph_istance.get_graph()

7

8 def get_route(self):

9 graph_returned = self.__graph_istance

10 graph_nodes = list(graph_returned.nodes)

11 starting_node = random.choice(graph_nodes)

12 destination_node = random.choice(graph_nodes)

13

14 shortest_route = osmnx.shortest_path(

15 graph_returned,

16 starting_node,

17 destination_node,

18 weight=’length’

19)

20 route_coords = [(graph_returned.nodes[node]["y"], graph_returned.nodes[node]["x"])

for node in shortest_route]

21

22 return route_coords

23

24 def get_delta_time(self) -> float:

25 return self.__delta_time_between_positions

26

27 def get_speed(self) -> float:

28 speed = self.__bycicle_speed_approximated / 3.6

22

SPECIFICA TECNICA v1.0.0

29 return speed

Il funzionamento dei metodi della BycicleSimulationStrategy è il seguente:

� init (...): Costruttore che inizializza la strategia di simulazione della bicicletta, ricevendo
un’istanza di GraphWrapper (presumibilmente per accedere ai dati della mappa). Inizializza la
velocità approssimativa della bicicletta e il delta temporale tra le posizioni;

� get route(...): Metodo che simula la generazione di un percorsoG. Utilizza la libreria OSMnx
per ottenere un percorsoG più breve casuale tra due nodi del grafo fornito e restituisce una lista di
coordinate geografiche;

� get delta time(...) -> float: Metodo che restituisce il delta temporale predefinito per la
simulazione della bicicletta;

� get speed(...) -> float: Metodo che restituisce la velocità media approssimativa della bici-
cletta (convertita da km/h a m/s).

Attualmente, BycicleSimulationStrategy è la nostra unica implementazione concreta dell’interfaccia
IPositionSimulationStrategy. Tuttavia, grazie all’adozione del pattern Strategy, il sistemaG è facil-
mente estendibile con altre strategie di simulazione per diversi tipi di movimento (ad esempio, simulazione
di un’auto, di un pedone, ecc.), semplicemente implementando nuove classi che rispettino il contratto
definito da IPositionSimulationStrategy.

4.5.1.3 Design Pattern - Factory Pattern

4.5.1.3.1 Motivazioni e studio del design pattern
Il pattern Factory è stato introdotto nel nostro sistemaG per centralizzare la creazione di oggetti di una
determinata famiglia (in questo caso, i sensori). Questa scelta architetturale mira a disaccoppiare il codice
client dalla necessità di conoscere e istanziare direttamente le classi concrete degli oggetti che utilizza.
Delegando la responsabilità di creazione ad una factory, si ottiene una maggiore flessibilità nel processoG
di istanziazione, si incapsula la logica potenzialmente complessa di creazione degli oggetti e si facilita
l’introduzione di nuove varianti o tipologie di oggetti.

4.5.1.3.2 Implementazione del design pattern
Il pattern Factory viene implementato attraverso:

1. Una classe dedicata ”Factory” che incapsula la logica di creazione di oggetti correlati;

2. Metodi specifici all’interno della ”Factory” responsabili dell’istanza dei diversi tipi di oggetti che
essa è progettata per produrre;

3. Una potenziale dipendenza da astrazioni (come interfacce o classi astratte) per la creazione delle
istanze concrete;

4. La gestione, all’interno dei metodi di creazione, della logica necessaria per istanziare e configu-
rare correttamente gli oggetti richiesti, inclusa la gestione di eventuali dipendenze o configurazioni
specifiche;

5. La possibilità per la ”Factory” di assicurare che gli oggetti creati rispettino determinati contratti o
abbiano uno stato iniziale valido.

4.5.1.3.3 Utilizzo
L’integrazione del pattern Factory semplifica il processoG di ottenimento di oggetti per il codice client.
Invece di istanziare direttamente le classi concrete degli oggetti di cui ha bisogno, il codice client inter-
agisce con la Factory, invocando il metodo di creazione appropriato per il tipo di oggetto desiderato.
Il client fornisce alla Factory eventuali parametri necessari per la creazione dell’oggetto. La Factory si
occupa quindi di creare e restituire un’istanza dell’oggetto richiesto, completamente configurata e pronta
per essere utilizzata. Questo approccio riduce l’accoppiamento tra il codice client e le implementazioni
concrete degli oggetti, migliorando la manutenibilità e la testabilità del sistemaG, in quanto le dipendenze
di creazione sono centralizzate e possono essere facilmente sostituite o testate isolatamente.

23

SPECIFICA TECNICA v1.0.0

4.5.1.3.4 Integrazione del pattern
Il pattern Factory è implementato nel nostro sistemaG attraverso la classe SensorFactory, la quale incap-
sula la logica di creazione degli oggetti GpsSensor. Questa classe definisce i seguenti metodi principali:

1 class SensorFactory:

2 def __init__(self, sensor_repo: ISensorRepository, user_repo: IUserRepository):

3 self.__user_sensor_service = UserSensorService(sensor_repo, user_repo)

4

5 def create_gps_sensor(self, position_sender: PositionSender, simulation_strategy:

IPositionSimulationStrategy) -> SensorSubject:

6 uuid = self.__user_sensor_service.assign_sensor_to_user()

7 return GpsSensor(uuid, position_sender, simulation_strategy)

8

9 def create_gps_sensor_list(self, position_sender: PositionSender, simulation_strategy:

IPositionSimulationStrategy, number_of_sensors: int) -> List[SensorSubject]:

10 sensor_list = [self.create_gps_sensor(position_sender, simulation_strategy) for i in

range(number_of_sensors)]

11 return sensor_list

Il funzionamento dei metodi della SensorFactory è il seguente:

� init (...): Costruttore che inizializza la factory, ricevendo repositoryG per sensori e utenti per la
gestione dell’assegnazione degli ID unici tramite UserSensorService;

� create gps sensor(...) -> SensorSubject: Crea una singola istanza di GpsSensor. Riceve un
PositionSender e una IPositionSimulationStrategy, ottiene un UUID tramite
UserSensorService e restituisce l’oggetto GpsSensor configurato con questi elementi;

� create gps sensor list(...) -> List[SensorSubject]: Crea una lista contenente il numero specificato
di istanze di GpsSensor, riutilizzando il metodo create gps sensor(...) per ogni elemento della
lista. Richiede un PositionSender, una IPositionSimulationStrategy e il numero di sensori da
creare.

In conclusione, la SensorFactory attualmente centralizza la creazione di sensori GPS, ma la sua proget-
tazione modulare ne consente una facile estensione futura per supportare la creazione di ulteriori tipi
di sensori, mantenendo la logica di istanziazione in un unico punto e rispettando il principio di singola
responsabilità.

4.5.1.4 Design Pattern - Adapter Pattern

4.5.1.4.1 Motivazioni e studio del design pattern
Nel contesto della nostra architettura-esagonaleG, l’Adapter Pattern risulta essenziale per facilitare
l’interazione tra la business logic e le componenti esterne (ad esempio, i servizi di pubblicazione su KafkaG
tramite serializzazione JSONG oppure la comunicazione con il repositoryG di ClickhouseG). Grazie a
questo approccio, possiamo mantenere l’indipendenza tra i moduli interni e le librerie/framework di terze
parti, riducendo i vincoli e semplificando la sostituzione futura di tali componenti senza impattare sul
sistemaG. Questo pattern consente quindi di adattare interfacce incompatibili e promuove il riutilizzo del
codice.

4.5.1.4.2 Implementazione del design pattern
L’implementazione del pattern Adapter avviene tramite la creazione di:

1. Una o più interfacce che definiscono i metodi necessari a interagire con l’architettura esagonale;

2. Una classe adapter concreta che implementa tali interfacce, convertendo gli oggetti e le chiamate
tra il formato richiesto dalla business logic e quello utilizzato dalla componente esterna.

24

SPECIFICA TECNICA v1.0.0

4.5.1.4.3 Utilizzo
L’integrazione del pattern Adapter disaccoppia la logica di interazione con librerie esterne dal codice prin-
cipale, migliorando modularità ed estensibilità. Permette di sostituire le implementazioni esterne senza in-
fluenzare la business logic, grazie all’astrazione del processoG di interazione. Ciò facilita l’interoperabilità
con diverse tecnologie e la manutenibilità. L’Adapter è particolarmente utile in caso di evoluzione
dell’infrastruttura sottostante, poiché l’aggiornamento si limita alla sua modifica, preservando l’integrità
del sistemaG.

4.5.1.4.4 Integrazione del pattern Adapter
Di seguito vengono mostrate diverse implementazioni concrete del pattern Adapter, ognuna focalizzata
su uno specifico aspetto dell’interazione con sistemi esterni. Vedremo un Adapter per la serializzazione di
oggetti GeoPosition, un Adapter che utilizza KafkaG per la pubblicazione di dati serializzati, e Adapter
dedicati alla gestione della serializzazione e deserializzazione JSONG a livello di riga, evidenziando la
versatilità di questo pattern nell’adattare diverse esigenze di integrazione all’interno dell’architettura
esagonale.
Di seguito viene mostrata l’implementazione concreta dell’Adapter per la serializzazione in JSONG degli
oggetti GeoPosition:

1 class PositionJsonAdapter(IJsonSerializable):

2

3 def serialize_to_json(self, position_istance: GeoPosition):

4

5 return JSON.dumps({

6 ’user_uuid’: position_istance.get_sensor_id(),

7 ’latitude’: float(position_istance.get_latitude()),

8 ’longitude’: float(position_istance.get_longitude()),

9 ’received_at’: position_istance.get_timestamp(),

10 })

Il funzionamento dei metodi della PositionJsonAdapter è il seguente:

� serialize to json(...): Metodo che prende in input un’istanza di GeoPosition e la serializza
in una stringa JSONG contenente l’UUID del sensore, la latitudine, la longitudine e il timestamp.

Il componente di pubblicazione KafkaConcluentAdapter, utilizza l’Adapter per implementare i metodi
previsti dalla porta Position Sender e serializzare i dati prima dell’invio a KafkaG:

1 class KafkaConfluentAdapter(PositionSender):

2

3 def __init__(self,

4 kafka_config: KafkaConfigParameters,

5 json_adapter_istance: "PositionJsonAdapter",

6 producer_istance: Producer):

7 super().__init__(json_adapter_istance)

8 self.__kafka_config = kafka_config

9 self.__producer = producer_istance

10

11 def send_data_to_broker(self, json_payload, sensor_id: str):

12 self.__producer.produce(self.__kafka_config.source_topic,

13 key = str(sensor_id),

14 value = json_payload.encode(’utf-8’))

15 self.__producer.flush()

Il funzionamento dei metodi della KafkaConfluentAdapter è il seguente:

� init (...): Costruttore che inizializza l’Adapter, ricevendo la configurazione di KafkaG, un
Adapter JSONG per la serializzazione e un producer KafkaG per la gestione dell’invio dei messaggi
al brokerG;

� send data to broker(...): Invia il payload JSONG, precedentemente serializzato, al topicG KafkaG
definito nella configurazione. Utilizza l’identificativo del sensore come chiave del messaggio e garan-
tisce l’effettiva consegna al brokerG tramite il metodo flush().

25

SPECIFICA TECNICA v1.0.0

L’Adapter per la deserializzazione di dati JSONG utilizza il modulo JsonRowDeserializationSchema

per convertire i dati ricevuti nel formato interno corretto.

1 class JsonRowDeserializationAdapter:

2 def __init__(self, row_type_config):

3 self.__row_type_info = row_type_config

Il funzionamento dei metodi della JsonRowDeserializationAdapter è il seguente:

� init (...): Costruttore che inizializza l’Adapter, ricevendo la configurazione del tipo di riga
JSONG da deserializzare e memorizzandola internamente per essere utilizzata.

Questo Adapter permette di gestire in modo astratto la configurazione del tipo di dati JSONG in ingresso,
garantendo flessibilità nell’integrazione con altri componenti del sistemaG. Allo stesso modo, l’Adapter
per la serializzazione utilizza il modulo JsonRowSerializationSchema per convertire i dati in formato
JSONG prima dell’invio.

1 class JsonRowSerializationAdapter:

2 def __init__(self, row_type_config_message):

3 self.__row_type_info_message = row_type_config_message

4

5 def get_serialization_schema(self):

6 return JsonRowSerializationSchema.builder()\

7 .with_type_info(self.__row_type_info_message)\

8 .build()

9

10 def get_deserialization_schema(self):

11 return JsonRowDeserializationSchema.builder() \

12 .type_info(self.__row_type_info) \

13 .build()

Il funzionamento dei metodi della JsonRowSerializationAdapter è il seguente:

� init (...): Costruttore che inizializza l’Adapter, ricevendo la configurazione del tipo di riga
JSONG da serializzare e memorizzandola internamente per definire lo schema JSONG in uscita;

� get serialization schema(...): Restituisce un’istanza di JsonRowSerializationSchema con-
figurata con le informazioni sul tipo di messaggio fornite durante l’inizializzazione dell’Adapter.
Questo schema è incaricato di serializzare i dati in formato JSONG;

� get deserialization schema(...): Restituisce un’istanza di JsonRowDeserializationSchema
configurata con le informazioni sul tipo di riga memorizzate. Questo schema è responsabile della
deserializzazione dei dati JSONG in un formato utilizzabile dal sistemaG.

4.5.2 Classi, interfacce, metodi e attributi

4.5.2.1 SensorSimulationAdministrator

� Descrizione: Implementa la logica per gestire la simulazione parallela di sensori multipli utiliz-
zando un ThreadPool. Si occupa di coordinare l’esecuzione simultanea delle simulazioni di tutti i
sensori registrati e l’invio dei dati a un topicG KafkaG;

� Attributi:

– sensor registry: List["SensorSubject"] - Registro contenente tutti i sensori da simu-
lare, memorizzati come una lista di oggetti SensorSubject.

� Operazioni:

– init (self, list of sensors: List["SensorSubject"]) - Costruttore che inizializza
l’amministratore con una lista di sensori su cui eseguire la simulazione;

– start simulation(self) - Avvia la simulazione parallela di tutti i sensori registrati uti-
lizzando un ThreadPool, assicurando che ogni sensore esegua il proprio metodo simulate()
contemporaneamente per massimizzare l’efficienza.

26

SPECIFICA TECNICA v1.0.0

4.5.2.2 SensorSubject

� Descrizione: Implementa una classe astratta ed è utilizzata per astrarre il sensore.

– sensor uuid: uuid - Identificatore univoco del sensore;

– simulation strategy: IPositionSimulationStrategy - Strategia utilizzata per simulare
la posizione del sensore;

– update time: float - Intervallo di tempo per gli aggiornamenti della simulazione.

� Operazioni:

– init (self, uuid creation: uuid, simulation strategy:

"IPositionSimulationStrategy") - Costruttore che inizializza il soggetto sensore con un
UUID e una strategia di simulazione;

– get sensor uuid(self) - Restituisce l’UUID del sensore;

– get update time(self) -> float - Restituisce l’intervallo di tempo per gli aggiornamenti;

– simulate(self) - Metodo astratto che deve essere implementato dalle sottoclassi per eseguire
la simulazione dei dati del sensore.

4.5.2.3 GpsSensor

� Descrizione: Implementa un sensore GPS che eredita dalla classe astratta SensorSubject. Questa
classe simula il movimento di un dispositivo GPS lungo un percorsoG predefinito e invia le posizioni
generate a un destinatario specifico;

� Attributi:

– position sender: PositionSender - Componente responsabile dell’invio delle posizioni
generate;

– speed mps: float - Velocità del sensore in metri al secondo.

� Operazioni:

– init (self, uuid creation: uuid, position sender: PositionSender,

simulation strategy: IPositionSimulationStrategy) - Costruttore che inizializza il sen-
sore GPS con un UUID, un sender di posizione e una strategia di simulazione;

– simulate(self) - Implementa il metodo astratto della classe padre. Simula il movimento
del sensore calcolando posizioni intermedie tra i punti della rotta definita nella strategia di
simulazione, e le invia attraverso il position sender con intervalli regolari;

– create geo position(self, latitude: float, longitude: float) -> GeoPosition -
Crea un oggetto GeoPosition con la latitudine e longitudine fornite, insieme all’UUID del
sensore e al timestamp corrente.

4.5.2.4 GeoPosition

� Descrizione: Implementa una classe che rappresenta una posizione geografica nel mondo. Mem-
orizza le coordinate (latitudine e longitudine), insieme all’identificatore del sensore che ha rilevato
la posizione e al timestamp della rilevazione;

� Attributi:

– sensor id: str - Identificatore del sensore che ha rilevato la posizione;

– latitude: float - Coordinata di latitudine della posizione;

– longitude: float - Coordinata di longitudine della posizione;

– timestamp: str - Timestamp che indica quando è stata rilevata la posizione.

� Operazioni:

27

SPECIFICA TECNICA v1.0.0

– init (self, sensor id: str, latitude: float, longitude: float,

timestamp: str) - Costruttore che inizializza un oggetto posizione con l’ID del sensore, le
coordinate geografiche e il timestamp;

– get sensor id(self) -> str - Restituisce l’identificatore del sensore come stringa;

– get latitude(self) -> float - Restituisce il valore della latitudine;

– get longitude(self) -> float - Restituisce il valore della longitudine;

– get timestamp(self) -> str - Restituisce il timestamp della rilevazione.

4.5.2.5 IPositionSimulationStrategy

� Descrizione: Implementa un’interfaccia astratta che definisce il contratto per diverse strategie
di simulazione della posizione, seguendo il pattern Strategy. Permette di astrarre diversi modi di
generare dati di posizione per i sensori simulati;

� Attributi:

– Nessun attributo definito a livello di interfaccia.

� Operazioni:

– get route(self) - Metodo astratto che deve essere implementato dalle sottoclassi per fornire
il percorsoG come sequenza di coordinate geografiche;

– get delta time(self) -> float - Metodo astratto che deve essere implementato dalle sot-
toclassi per fornire l’intervallo di tempo tra aggiornamenti consecutivi della posizione;

– get speed(self) -> float - Metodo astratto che deve essere implementato dalle sottoclassi
per fornire la velocità di spostamento del sensore simulato.

4.5.2.6 BycicleSimulationStrategy

� Descrizione: Implementa una strategia di simulazione specifica per biciclette, che estende l’interfaccia
IPositionSimulationStrategy. Genera percorsi casuali su una rete stradale utilizzando dati geografici
e calcola il percorsoG più breve tra due punti casuali del grafo;

� Attributi:

– bycicle speed approximated: float - Velocità approssimativa della bicicletta in km/h;

– delta time between positions: float - Intervallo di tempo in secondi tra posizioni con-
secutive;

– graph istance: Graph - Istanza del grafo della rete stradale utilizzata per la generazione
del percorsoG.

� Operazioni:

– init (self, graph istance: GraphWrapper) - Costruttore che inizializza la strategia
con un’istanza di GraphWrapper contenente il grafo della rete stradale;

– get route(self) - Implementa il metodo dell’interfaccia per generare un percorsoG casuale.
Seleziona due nodi casuali dal grafo e calcola il percorsoG più breve tra di essi, restituendo le
coordinate geografiche dei nodi del percorsoG;

– get delta time(self) -> float - Implementa il metodo dell’interfaccia per restituire
l’intervallo di tempo tra gli aggiornamenti di posizione;

– get speed(self) -> float - Implementa il metodo dell’interfaccia per restituire la velocità
della bicicletta convertita da km/h a m/s.

28

SPECIFICA TECNICA v1.0.0

4.5.2.7 GraphWrapper

� Descrizione: Implementa un wrapper che nasconde i dettagli di implementazione di un grafo
utilizzando la libreria OSMnx. Permette di ottenere un grafo della rete stradale basato su Open-
StreetMap per una determinata posizione geografica;

� Attributi:

– latitude: float - Latitudine del punto centrale da cui generare il grafo;

– longitude: float - Longitudine del punto centrale da cui generare il grafo;

– map radius: int - Raggio in metri intorno al punto centrale per definire l’estensione del
grafo;

– network type: str - Tipo di rete stradale da recuperare (es. ”drive”, ”bike”, ”walk”).

� Operazioni:

– init (self, latitude: float, longitude: float, map radius: int,

network type: str) - Costruttore che inizializza il wrapper con i parametri necessari per
generare il grafo;

– get graph(self) -> osmnx.graph - Restituisce un grafo della rete stradale centrato sulle
coordinate specificate con il raggio e il tipo di rete definiti, utilizzando la libreria OSMnx.

4.5.2.8 SensorFactory

� Descrizione: Implementa il pattern Factory per la creazione di sensori. Si occupa di istanziare
oggetti sensore nascondendo i dettagli di implementazione e gestendo l’assegnazione degli UUID
attraverso il servizio utente-sensore;

� Attributi:

– user sensor service: UserSensorService - Servizio che gestisce l’associazione tra sen-
sori e utenti.

� Operazioni:

– init (self, sensor repo: ISensorRepository, user repo: IUserRepository)

- Costruttore che inizializza la factory con i repositoryG necessari per gestire sensori e utenti;

– create gps sensor(self, position sender: PositionSender, simulation strategy:

IPositionSimulationStrategy) -> SensorSubject - Crea un singolo sensore GPS asseg-
nandogli un UUID tramite il servizio utente-sensore e configurandolo con il sender e la strategia
di simulazione forniti;

– create gps sensor list(self, position sender: PositionSender,

simulation strategy: IPositionSimulationStrategy, number of sensors: int)

-> List[SensorSubject] - Crea una lista di sensori GPS del numero specificato, utilizzando
lo stesso sender e la stessa strategia di simulazione per tutti.

4.5.2.9 UserSensorService

� Descrizione: Implementa un servizio che gestisce l’associazione tra sensori e utenti. Si occupa di
assegnare sensori disponibili a utenti liberi, garantendo l’atomicità delle operazioni attraverso un
meccanismo di lock per prevenire race condition in ambienti multi-thread;

� Attributi:

– SensorRepository: ISensorRepository - RepositoryG per l’accesso e la gestione dei dati
relativi ai sensori;

– UserRepository: IUserRepository - RepositoryG per l’accesso e la gestione dei dati rel-
ativi agli utenti;

– lock: threading.Lock - Oggetto lock utilizzato per garantire l’accesso thread-safe durante
le operazioni di assegnazione sensore-utente.

29

SPECIFICA TECNICA v1.0.0

� Operazioni:

– init (self, sensor repository:

ISensorRepository, user repository: IUserRepository) - Costruttore che inizializza il
servizio con i repositoryG necessari per gestire sensori e utenti;

– assign sensor to user(self) -> uuid - Assegna un sensore disponibile ad un utente libero.
Utilizza un lock per garantire che l’operazione sia thread-safe. Recupera un sensore non
occupato e un utente libero dai rispettivi repositoryG, marca il sensore come occupato e lo
associa all’utente. Registra dettagliatamente tutte le operazioni in un file di log. Restituisce
l’UUID del sensore assegnato o None se l’assegnazione fallisce.

4.5.2.10 IUserRepository

� Descrizione: Implementa un’interfaccia astratta che definisce il contratto per i repositoryG di
gestione degli utenti. Stabilisce i metodi necessari per gestire lo stato di occupazione degli utenti e
la ricerca di utenti disponibili;

� Attributi:

– Nessun attributo definito a livello di interfaccia.

� Operazioni:

– mark user as occupied(self, user uuid: uuid.UUID, sensor uuid: uuid.UUID)

- Metodo astratto che deve essere implementato dalle sottoclassi per marcare un utente come
occupato e associarlo a un sensore specifico tramite i rispettivi UUID;

– get free user(self) -> UserDTO - Metodo astratto che deve essere implementato dalle sot-
toclassi per recuperare un utente non assegnato a nessun sensore. Restituisce un oggetto
UserDTO rappresentante l’utente libero, o None se non ci sono utenti disponibili.

4.5.2.11 UserRepository

� Descrizione: Implementa la classe concreta che realizza l’interfaccia IUserRepository per la ges-
tione degli utenti nel databaseG. Fornisce l’accesso ai dati degli utenti e le operazioni per modificare
il loro stato di assegnazione ai sensori;

� Attributi:

– db conn: DatabaseConnection - Connessione al databaseG utilizzata per eseguire queryG
sui dati degli utenti.

� Operazioni:

– init (self, db connection: DatabaseConnection) - Costruttore che inizializza il repositoryG
con una connessione al databaseG;

– mark user as occupied(self, user uuid: uuid.UUID, sensor uuid: uuid.UUID) - Im-
plementa il metodo dell’interfaccia per assegnare un sensore a un utente nel databaseG. Esegue
una queryG SQLG che aggiorna il campo assigned sensor uuid con l’UUID del sensore specifi-
cato per l’utente con l’UUID indicato;

– get free user(self) -> UserDTO - Implementa il metodo dell’interfaccia per recuperare un
utente non assegnato ad alcun sensore. Esegue una queryG SQLG che seleziona il primo utente
con assigned sensor uuid impostato a NULL e restituisce un oggetto UserDTO contenente tutte
le informazioni dell’utente. Se non viene trovato alcun utente disponibile, restituisce None.

4.5.2.12 UserDTO

� Descrizione: Implementa un oggetto di trasferimento dati (Data Transfer Object) per la classe
User. Viene utilizzato per astrarre e incapsulare i dati degli utenti, facilitando il trasferimento delle
informazioni tra i diversi strati dell’applicazione senza esporre i dettagli implementativi;

� Attributi:

30

SPECIFICA TECNICA v1.0.0

– user uuid: uuid - Identificatore univoco dell’utente;

– assigned sensor uuid: uuid - Identificatore univoco del sensore assegnato all’utente, può
essere None se nessun sensore è assegnato;

– name: str - Nome dell’utente;

– surname: str - Cognome dell’utente;

– email: str - Indirizzo email dell’utente;

– gender: str - Genere dell’utente;

– birthdate: str - Data di nascita dell’utente;

– civil status: str - Stato civile dell’utente.

� Operazioni:

– init (self, user uuid: uuid, assigned sensor uuid: uuid, name: str, surname:

str, email: str, gender: str, birthdate: str, civil status: str) - Costruttore
che inizializza l’oggetto DTO con tutti i dati dell’utente.

4.5.2.13 ISensorRepository

� Descrizione: Implementa un’interfaccia astratta che definisce il contratto per i repositoryG di
gestione dei sensori. Stabilisce i metodi necessari per gestire lo stato di occupazione dei sensori e
la ricerca di sensori disponibili nel sistemaG;

� Attributi:

– Nessun attributo definito a livello di interfaccia.

� Operazioni:

– mark sensor as occupied(self, sensor uuid: uuid.UUID) - Metodo astratto che deve es-
sere implementato dalle sottoclassi per marcare un sensore come occupato, utilizzando il suo
UUID come identificatore;

– get non occupied sensor(self) -> SensorDTO - Metodo astratto che deve essere implemen-
tato dalle sottoclassi per recuperare un sensore non occupato dal repositoryG. Restituisce un
oggetto SensorDTO rappresentante il sensore disponibile, o None se non ci sono sensori liberi.

4.5.2.14 SensorRepository

� Descrizione: Implementa la classe concreta che realizza l’interfaccia ISensorRepository per la ges-
tione dei sensori nel databaseG. Fornisce l’accesso ai dati dei sensori e le operazioni per modificarne
lo stato di occupazione;

� Attributi:

– db conn: DatabaseConnection - Connessione al databaseG utilizzata per eseguire queryG
sui dati dei sensori.

� Operazioni:

– init (self, db connection: DatabaseConnection) - Costruttore che inizializza il repositoryG
con una connessione al databaseG;

– mark sensor as occupied(self, sensor uuid: uuid.UUID) - Implementa il metodo
dell’interfaccia per marcare un sensore come occupato nel databaseG. Esegue una queryG
SQLG che aggiorna il campo is occupied a true per il sensore con l’UUID specificato;

– get non occupied sensor(self) -> SensorDTO - Implementa il metodo dell’interfaccia per
recuperare un sensore non occupato dal databaseG. Esegue una queryG SQLG che seleziona il
primo sensore con is occupied impostato a 0 e restituisce un oggetto SensorDTO contenente
l’UUID del sensore e il suo stato di occupazione. Se non viene trovato alcun sensore disponibile,
restituisce None.

31

SPECIFICA TECNICA v1.0.0

4.5.2.15 SensorDTO

� Descrizione: Implementa un oggetto di trasferimento dati (Data Transfer Object) per la classe
Sensor. Viene utilizzato per astrarre e incapsulare i dati dei sensori, facilitando il trasferimento
delle informazioni tra i diversi strati dell’applicazione senza esporre i dettagli implementativi;

� Attributi:

– sensor uuid: uuid - Identificatore univoco del sensore;

– is occupied: bool - Flag che indica se il sensore è attualmente occupato (assegnato a un
utente) o disponibile.

� Operazioni:

– init (self, sensor uuid: uuid, is occupied: bool) - Costruttore che inizializza
l’oggetto DTO con l’UUID del sensore e il suo stato di occupazione.

4.5.2.16 DatabaseConnection

� Descrizione: Implementa una classe che gestisce la connessione al databaseG ClickhouseG. For-
nisce metodi per stabilire e chiudere connessioni al databaseG, incapsulando i dettagli di configu-
razione e gestione della connessione;

� Attributi:

– host: str - Indirizzo del server ClickhouseG;

– port: int - Porta sulla quale il server ClickhouseG accetta connessioni;

– user: str - Nome utente per l’autenticazione al databaseG;

– password: str - Password per l’autenticazione al databaseG;

– connection - Oggetto connessione al databaseG ClickhouseG, inizialmente impostato a None.

� Operazioni:

– init (self, config parameters: DatabaseConfigParameters) - Costruttore che in-
izializza l’oggetto connessione con i parametri di configurazione del databaseG forniti;

– connect(self) - Stabilisce una connessione al databaseG ClickhouseG utilizzando i parametri
configurati e restituisce l’oggetto client di connessione;

– disconnect(self) - Chiude la connessione al databaseG se attiva e reimposta l’attributo
connection a None.

4.5.2.17 DatabaseConfigParameters

� Descrizione: Implementa una classe di dati (dataclass) che contiene i parametri di configurazione
necessari per la connessione a un databaseG ClickhouseG. Fornisce una struttura semplice per
incapsulare e trasportare le impostazioni di configurazione del databaseG in modo tipizzato;

� Attributi:

– host: str - Indirizzo del server ClickhouseG. Il valore predefinito è ”clickhouse”;

– port: str - Porta sulla quale il server ClickhouseG accetta connessioni. Il valore predefinito
è ”8123”;

– user: str - Nome utente per l’autenticazione al databaseG. Il valore predefinito è ”default”;

– password: str - Password per l’autenticazione al databaseG. Il valore predefinito è ”pass”.

� Operazioni:

– Nessuna operazione esplicita definita, in quanto si tratta di una dataclass che fornisce auto-
maticamente costruttore, rappresentazione in stringa, confronto e altre funzionalità.

32

SPECIFICA TECNICA v1.0.0

4.5.2.18 IJsonSerializable

� Descrizione: Implementa un’interfaccia astratta che definisce il contratto per le classi che devono
essere serializzabili in formato JSONG. Fornisce un metodo standard per la serializzazione di
oggetti;

� Attributi:

– Nessun attributo definito a livello di interfaccia.

� Operazioni:

– serialize to json(self, object to serialize: object) - Metodo astratto che deve es-
sere implementato dalle sottoclassi per serializzare un oggetto in formato JSONG.

4.5.2.19 PositionJsonAdapter

� Descrizione: Implementa un adattatore che converte oggetti GeoPosition in formato JSONG,
seguendo il pattern Adapter. Realizza l’interfaccia IJsonSerializable per fornire una serializzazione
standardizzata degli oggetti posizione;

� Attributi:

– Nessun attributo specificato nella classe.

� Operazioni:

– serialize to json(self, object to serialize: GeoPosition) - Implementa il metodo
dell’interfaccia IJsonSerializable. Converte un oggetto GeoPosition in una stringa JSONG con-
tenente l’UUID dell’utente (derivato dall’ID del sensore), le coordinate geografiche (latitudine
e longitudine) e il timestamp della rilevazione.

4.5.2.20 PositionSender

� Descrizione: Implementa una classe astratta che funge da componente per l’invio di posizioni
geografiche a un brokerG di messaggi. Progettata per essere estesa da adattatori specifici come
KafkaConfluentAdapter, gestisce la serializzazione dei dati di posizione e fornisce un meccanismo
thread-safe per l’invio;

� Attributi:

– position serializator: IJsonSerializable - Componente che si occupa della serializ-
zazione degli oggetti GeoPosition in formato JSONG;

– lock: threading.Lock - Meccanismo di lock per garantire l’accesso thread-safe alle risorse
condivise durante l’invio dei dati.

� Operazioni:

– init (self, json adapter istance: IJsonSerializable) - Costruttore che inizializza
il sender con un adattatore JSONG per la serializzazione dei dati di posizione;

– send data to broker(self, json payload, sensor id: str) - Metodo astratto che deve
essere implementato dalle sottoclassi per inviare i dati serializzati al brokerG di messaggi
specifico;

– send position(self, position: GeoPosition) - Metodo pubblico che gestisce il processoG
di invio di una posizione. Serializza l’oggetto GeoPosition utilizzando l’adattatore JSONG e
invoca il metodo astratto send data to broker in modo thread-safe utilizzando un lock.

33

SPECIFICA TECNICA v1.0.0

4.5.2.21 KafkaConfluentAdapter

� Descrizione: Implementa un adattatore concreto che estende PositionSender per inviare dati
di posizione a un cluster KafkaG utilizzando la libreria Confluent. Realizza l’interfaccia di invio
astratta fornendo un’implementazione specifica per il brokerG KafkaG;

� Attributi:

– kafka config: KafkaConfigParameters - Parametri di configurazione per la connessione
a KafkaG, inclusi il topicG di destinazione e altre impostazioni specifiche;

– producer: Producer - Istanza del producer Confluent KafkaG utilizzato per inviare i mes-
saggi al cluster KafkaG.

� Operazioni:

– init (self, kafka config: KafkaConfigParameters, JSON adapter istance:

"PositionJsonAdapter", producer istance: Producer) - Costruttore che inizializza
l’adattatore con i parametri di configurazione KafkaG, un adattatore JSONG per la serializ-
zazione e un’istanza del producer Confluent;

– send data to broker(self, json payload, sensor id: str) - Implementa il metodo as-
tratto della classe base. Invia il payload JSONG al topicG KafkaG specificato nella config-
urazione, utilizzando l’UUID del sensore come chiave del messaggio e il payload serializzato
come valore. Dopo l’invio, esegue un flush per garantire che il messaggio venga consegnato al
brokerG.

4.5.2.22 KafkaConfigParameters

� Descrizione: Implementa una classe di dati (dataclass) che contiene i parametri di configurazione
necessari per la connessione a un cluster KafkaG. Fornisce una struttura semplice per incapsulare
e trasportare le impostazioni di configurazione KafkaG in modo tipizzato;

� Attributi:

– bootstrap servers: str - L’indirizzo e la porta dei server bootstrap KafkaG a cui connet-
tersi. Il valore predefinito è ”kafka:9092”;

– source topic: str - Il nome del topicG KafkaG su cui pubblicare i messaggi. Il valore
predefinito è ”SimulatorPosition”.

� Operazioni:

– Nessuna operazione esplicita definita, in quanto si tratta di una dataclass che fornisce auto-
maticamente costruttore, rappresentazione in stringa, confronto e altre funzionalità.

34

SPECIFICA TECNICA v1.0.0

4.5.3 Streaming Layer - Apache Kafka

4.5.3.1 Topic e partitioning
In questo progettoG si utilizzano due topicG:

� SimulatorPosition, per pubblicare i dati generati dai sensori (simulator);

� MessageElaborated, per pubblicare gli annunci generati dall’LLM.

4.5.3.2 Producer e Consumer

4.5.3.2.1 Message keys
Le chiavi dei messaggi (key) determinano la partizione KafkaG a cui viene inviato ogni evento, bilanciando
il carico tra i consumer. Una chiave può essere definita in base a uno o più campi del messaggio, ad esempio
l’ID del sensore per i record di posizione. Inoltre, è fondamentale considerare come la scelta delle chiavi
possa influenzare la distribuzione dei dati e le performance del sistemaG.

1 key_type = Types.ROW_NAMED([’sensor_uuid’], [Types.STRING()])

4.5.3.3 Integrazione con Flink keyed stream
All’interno del job FlinkG, l’utilizzo della chiave su ogni record consente di creare un keyed stream in
cui i dati, prima di essere elaborati, vengono raggruppati in base alla loro chiave. Questo permette di
gestire le funzioni di stato in modo isolato per ogni chiave e di applicare trasformazioni o filtri specifici,
migliorando l’efficacia del processing e riducendo i conflitti di stato tra utenti o sensori diversi.

4.5.3.4 Schema topic simulator position
I dati inviati dal producer sul topicG SimulatorPosition seguono questa struttura JSONG:

1 {

2 "user_uuid": "UUID",

3 "latitude": "Float64",

4 "longitude": "Float64",

5 "received_at": "String"

6 }

4.5.3.5 Schema message elaborated
I messaggi sul topicG messaggi hanno il seguente formato:

1 {

2 "user_id": "UUID",

3 "activity_id": "UUID",

4 "message_id": "UUID",

5 "message_text": "String",

6 "activity_lat": "Float64",

7 "activity_lon": "Float64",

8 "creation_time": "String",

9 "user_lat": "Float64",

10 "user_lon": "Float64"

11 }

4.5.3.6 Kafka poisoning

35

SPECIFICA TECNICA v1.0.0

� Descrizione del problema
Il sistemaG di stream-processingG KafkaG risulta potenzialmente vulnerabile ad un attaccante che
inserisca dati falsi o malformati al fine di alterare il comportamento del sistemaG, pertanto è
necessario applicare delle strategie di mitigazione che verifichino origine e correttezza dei dati e
limitino i potenziali danni;

� Soluzioni
Alcune delle possibili soluzioni per la mitigazione di questa tipologia di attacchi sono le seguenti:

– Validazione dei dati a livello di codice;

– Uso del protocolloG TLS per la comunicazione sensori-sistema;

– Autenticazione sensori mediante SASL;

– Definizione di policies di access control.

� Strategie di mitigazione in Dettaglio

– Validazione dei dati a livello di codice

* Descrizione:
La validazione dei dati a livello di codice consiste nel controllo del dato, ovvero quando
si prelevano i dati dal topicG potrebbe capitare che siano dei dati malformati o malevoli.
Facendo questo in modo mirato sul singolo dato, è possibile garantire che ogni informazione
elaborata sia conforme agli standard attesi.
Ad esempio se sappiamo per certo che una persona si muove tra i 3 e i 6 km/h, possiamo
scartare i dati che superano questa soglia;

* Requisiti implementazione:
Sarà necessario implementare dei controlli quando si prelevano i dati dal topicG cos̀ı da
garantire che i dati al loro interno siano entro un range di valori ammissibili, questo
dovrebbe garantire la validità del dato.

– Uso del protocolloG TLS per la comunicazione sensori-sistema

* Descrizione:
Il protocolloG TLS fornisce una modalità di comunicazione tra client e server protetta
da cifratura in grado di autenticare il server e garantire l’integrità e riservatezza dei dati
in transito. Il protocolloG utilizza una chiave di cifratura asimmetrica certificata per
stabilire la comunicazione iniziale per PoIG utilizzare cifratura simmetrica per il resto
della sessione. Apache KafkaG dispone inoltre della possibilità di applicare 2-way TLS per
introdurre un’ulteriore autenticazione del client;

* Requisiti implementazione:
Il protocolloG TLS è già implementato all’interno di Apache KafkaG per abilitarlo è però
necessario inserire i certificati richiesti. È possibile adottare sia certificati interni che
certificati garantiti da una Certification Authority.

– Autenticazione sensori mediante SASL

* Descrizione:
Il protocolloG SASL fornisce la possibilità di integrare un ampio spettro di metodologie
per l’autenticazione di messaggi in ingresso basata su sfide e risposte e può anche essere
integrato con protocolli di trasporto che garantiscano riservatezza del messaggio;

* Requisiti implementazione:
Il protocolloG SASL è già implementato all’interno di Apache KafkaG ed è necessario
abilitarlo configurando i meccanismi di autenticazione desiderati (come PLAIN, SCRAM
o GSSAPI/Kerberos). È PoIG richiesta la configurazione dei parametri di autenticazione
sia lato client che server, definendo credenziali e ruoli degli utenti nel cluster KafkaG.
Questa opzione offrirebbe una soluzione di sicurezza robusta per autenticare i sensori e
garantire l’integrità dei dati senza la necessità di contratti.

– Policies di access control

* Descrizione:
L’uso di access control lists permette di definire un insieme di regole volto a limitare la
possibilità che un client compromesso abbia accesso ad informazioni sensibili o sia in grado
di manomettere il sistemaG. Ogni regola definisce per un client o gruppo di client se questi
sia autorizzato o meno a produrre o consumare elementi di un topicG;

36

SPECIFICA TECNICA v1.0.0

* Requisiti implementazione:
Apache KafkaG dispone di un sistemaG integrato di gestione dei permessi che facilita
l’implementazione di policy di sicurezza. È però necessario definire opportunamente le
policies desiderate nel file di configurazione, assegnando i permessi specifici per ogni com-
ponente del sistemaG. Ad esempio, è possibile limitare i permessi di scrittura dei simulatori
al solo topicG dei dati dei sensori, mentre il modulo di elaborazione potrà avere solo per-
messi di lettura su quel topicG. La configurazione delle policies viene gestita tramite file
ACL (Access Control List) che specificano dettagliatamente i permessi di ogni componente
del sistemaG.

� Conclusioni
La validazione dei dati a livello di codice è stata adottata per mitigare il rischioG di Kafka poison-
ing, in quanto non erano richieste misure di sicurezza avanzate dal proponenteG. Pur offrendo una
protezione inferiore rispetto a soluzioni più sofisticate, questa strategia risulta semplice da integrare
e fornisce una prima linea di difesa contro possibili iniezioni di dati malevoli, senza comportare
carichi di lavoro eccessivi sul resto del progettoG. È stato condotto comunque uno studio appro-
fondito delle altre tecniche di mitigazione, cos̀ı da valutare il carico di lavoro richiesto e quale fosse
la scelta più adatta, lasciando comunque possibilità di implementarle in futuro per migliorare la
sicurezza del sistemaG.

4.5.4 Processing Layer - PositionToMessageProcessor

4.5.4.1 Apache Flink
Nell’architettura NearYou, FlinkG gestisce un job di streaming strutturato sfruttando le funzionalità
offerte della DataStream APIG, approccio scelto per la sua flessibilità e per la ricchezza di operatori
disponibili per la manipolazione dei flussi di dati. Il flusso di elaborazione è organizzato attraverso un
componente centrale, il FlinkJobManager, che coordina l’intero ciclo-di-vitaG del processing dei dati.
Questo manager riceve i dati di posizione dagli utenti tramite il simulation module, li elabora attraverso
una serie di trasformazioni, e infine produce messaggi pubblicitari personalizzati.
Il job è progettato secondo principi di modularità e dependency injection, con componenti intercambiabili
che seguono interfacce ben definite. L’elaborazione avviene in diverse fasi sequenziali:

� Ricezione di eventi di posizione attraverso un source connector KafkaG;

� Raggruppamento (key-by) per identificatore utente;

� Validazione dei dati in input;

� Applicazione di funzioni di mapping per la generazione dei messaggi;

� Filtraggio dei messaggi già visualizzati;

� Pubblicazione dei risultati su un topicG KafkaG di output.

La configurazione del job è ottimizzata per l’elaborazione in tempo reale con un livello di parallelismo
adeguato al carico di lavoro previsto, impostato attraverso i parametri di configurazione dell’ambiente di
esecuzione FlinkG. L’utilizzo della DataStream APIG permette inoltre di definire operazioni di trasfor-
mazione in modo dichiarativo, aumentando la leggibilità del codice e facilitando la manutenzione.

4.5.4.1.1 Elaborazione dati e pattern di progettazione
Il cuore dell’elaborazione dati in FlinkG è costituito dal pattern di trasformazione dello stream attraverso
funzioni di mapping e filtraggio. Il componente principale di questa elaborazione è il PositionToMessage-
Processor, che implementa un pattern di design funzionale per trasformare i dati di posizione in messaggi
pubblicitari contestuali.
Questo processore integra diverse fonti di dati e servizi:

� RepositoryG di utenti per recuperare informazioni demografiche e preferenze;

� RepositoryG di attività per individuare punti di interesse nelle vicinanze;

� RepositoryG di messaggi per individuare eventuali messaggi già generati per la coppia utente-
attività;

37

SPECIFICA TECNICA v1.0.0

� Servizio LLMG per generare testi pubblicitari personalizzati.

Un aspetto importante dell’elaborazione è il meccanismo di filtering, implementato attraverso il compo-
nente FilterMessageAlreadyDisplayed. Questa logica evita di inviare ripetutamente lo stesso messaggio
quando l’utente rimane fermo o si muove minimamente, ottimizzando cos̀ı sia l’esperienza utente che il
consumo di risorse del sistemaG.
Il pattern di progettazione adottato consente una chiara separazione delle responsabilità: la logica di
business è incapsulata nel processore, mentre l’infrastruttura di comunicazione è gestita dal job manager.
Questo approccio facilita la manutenzione e l’evoluzione del sistemaG.

4.5.4.1.2 Integrazione con componenti esterni
FlinkG funge da elemento integratore tra i vari componenti dell’architettura NearYou, coordinando il
flusso dei dati attraverso connettori specializzati:

� Integrazione con KafkaG: Attraverso i connettori KafkaPositionReceiver e KafkaMessageWriter,
FlinkG legge le posizioni degli utenti dal topicG ”SimulatorPosition” e pubblica i messaggi elaborati
sul topicG ”MessageElaborated”. La DataStream APIG fornisce connettori nativi per KafkaG che
semplificano questa integrazione, garantendo la consistenza dei tipi di dati e la corretta gestione
delle configurazioni;

� Interazione con ClickhouseG: Il rilevamento di prossimità ai punti di interesse nel raggio di
generazione non avviene direttamente in FlinkG, bens̀ı delegata a ClickhouseG attraverso queryG
geospaziali ottimizzate che sfruttano la funzione nativa geoDistance. Questo approccio sfrutta le
capacità di calcolo geospaziale già presenti nel databaseG, ottimizzando cos̀ı le performance del
sistemaG;

� Comunicazione con servizi LLMG: FlinkG orchestra l’interazione con il servizio GroqG per la
generazione di testi pubblicitari, implementando meccanismi di rate limiting per gestire le restrizioni
dell’API. Questo garantisce un utilizzo efficiente del servizio esterno, bilanciando la necessità di
generare contenuti personalizzati con i vincoli imposti dal provider.

4.5.4.1.3 Serializzazione e deserializzazione dei messaggi
La gestione della serializzazione e deserializzazione è fondamentale nell’architettura FlinkG per garantire
l’efficiente trasferimento dei dati tra i componenti del sistemaG streaming. Il sistemaG implementa
serializzatori personalizzati che garantiscono coerenza e integrità dei dati durante l’elaborazione.

4.5.4.2 Diagrammi delle classi
Seguono i diagrammmi delle classi, suddiviso per comodita in 2 parti, rispetto alla classe FlinkJobManager

38

SPECIFICA TECNICA v1.0.0

Figure 7: PositionToMessageProcessorService InBound/OutBound Ports con il BrokerG

39

SPECIFICA TECNICA v1.0.0

Figure 8: PositionToMessageProcessorService OutBound Ports

4.5.4.3 Design Pattern - Adapter Pattern

� Motivazioni e studio del design-patternG

– Nel contesto della nostra architettura-esagonaleG, l’Adapter Pattern risulta essenziale per
facilitare l’interazione tra la business logic e le componenti esterne (ad esempio, i servizi di
pubblicazione su KafkaG o la ricezione di dati da esso);

– Grazie a questo approccio, manteniamo l’indipendenza tra i moduli interni e le librerie di
terze parti, riducendo i vincoli e semplificando la futura sostituzione di tali componenti senza
impattare sul sistemaG;

– Questo pattern consente di adattare interfacce incompatibili e promuove il riutilizzo del codice,
proteggendo la logica di business dai dettagli implementativi delle tecnologie esterne.

� Implementazione del design-patternG

– L’implementazione del pattern Adapter avviene tramite:

1. Interfacce ben definite (IMessageWriter e IPositionReceiver) che dichiarano i metodi
essenziali per l’interazione con l’architettura esagonale;

2. Classi adapter concrete (KafkaMessageWriter e KafkaPositionReceiver) che implemen-
tano tali interfacce, incapsulando la complessità di conversione tra i formati interni e quelli
richiesti da KafkaG;

3. Adapter di serializzazione/deserializzazione (JsonRowSerializationAdapter e
JsonRowDeserializationAdapter) che gestiscono la conversione dei dati.

40

SPECIFICA TECNICA v1.0.0

� Integrazione del pattern

– KafkaMessageWriter agisce come adapter per l’invio di messaggi a KafkaG:

1. Riceve una configurazione (KafkaWriterConfiguration) e un adapter di serializzazione;

2. Costruisce un serializzatore di record KafkaG configurandolo con il topicG di destinazione
e gli schemi di serializzazione per chiave e valore;

3. Crea un sink KafkaG con i server bootstrap e il serializzatore configurati;

4. Espone il metodo get message writer() che restituisce il sink configurato, nascondendo
tutti i dettagli di implementazione di KafkaG.

– KafkaPositionReceiver agisce come adapter per la ricezione di posizioni da KafkaG:

1. Riceve una configurazione (KafkaSourceConfiguration) e un adapter di deserializzazione;

2. Costruisce una sorgente KafkaG configurandola con server bootstrap, topicG, gruppo con-
sumer e schema di deserializzazione;

3. Configura proprietà specifiche come auto-commit e gestione degli offset;

4. Espone il metodo get position receiver() che restituisce la sorgente configurata, nascon-
dendo i dettagli di KafkaG.

– Grazie a questi adapter, il core dell’applicazione può interagire con KafkaG attraverso un’interfaccia
semplificata e coerente, senza essere esposto ai dettagli implementativi della libreria KafkaG. Se
in futuro fosse necessario sostituire KafkaG con un altro brokerG di messaggistica, basterebbe
implementare nuovi adapter che rispettino le stesse interfacce.

4.5.4.4 Design Pattern - Strategy Pattern

� Motivazioni e studio del design-patternG

– Nel contesto della nostra architettura, il Pattern Strategy risulta fondamentale per gestire
diverse implementazioni di modelli linguistici (LLM) senza modificare il codice client che li
utilizza;

– Questo pattern permette di definire una famiglia di algoritmi (in questo caso, diverse im-
plementazioni di servizi LLMG), incapsularli in classi separate e renderli intercambiabili a
runtime;

– Grazie a questo approccio, possiamo estendere facilmente le capacità del sistemaG aggiungendo
nuovi servizi LLMG senza modificare la logica di business che li utilizza, garantendo una
maggiore flessibilità e manutenibilità del codice.

� Implementazione del design-patternG

– L’implementazione del pattern Strategy avviene tramite:

1. Un’interfaccia astratta LLMService che definisce il contratto comune per tutti i servizi
LLMG, dichiarando i metodi essenziali come set up chat() e get llm structured response();

2. Classi concrete (come GroqLLMService) che implementano l’interfaccia LLMService, for-
nendo implementazioni specifiche per interagire con diversi provider di LLMG;

3. Un meccanismo di configurazione che permette di selezionare la strategia appropriata a
runtime.

� Integrazione del pattern

– LLMService agisce come interfaccia strategica:

1. Definisce un costruttore che riceve un modello strutturato di risposta (structured response);

2. Dichiara il metodo astratto set up chat() che deve essere implementato per inizializzare
la comunicazione con il servizio LLMG specifico;

3. Dichiara il metodo astratto get llm structured response(prompt) che deve essere im-
plementato per ottenere risposte strutturate dal LLMG.

– GroqLLMService rappresenta una strategia concreta:

1. Implementa l’interfaccia LLMService fornendo un’implementazione specifica per il servizio
GroqG;

41

SPECIFICA TECNICA v1.0.0

2. Configura parametri specifici come la chiave APIG, il modello (”Gemma2-9b-it”), la tem-
peratura e altri parametri propri di GroqG;

3. Implementa set up chat() impostando un limitatore di frequenza e inizializzando il client
ChatGroq;

4. Implementa get llm structured response(prompt) utilizzando la funzionalità
with structured output di ChatGroq per ottenere risposte nel formato desiderato.

– Il client (in questo caso, PositionToMessageProcessor) interagisce con l’interfaccia LLMService
senza conoscere quale implementazione specifica viene utilizzata:

1. Riceve un’istanza di LLMService tramite dependency injection;

2. Chiama il metodo get llm structured response() sull’interfaccia, delegando
l’implementazione concreta alla strategia selezionata;

3. Non ha bisogno di conoscere i dettagli implementativi di GroqG o di qualsiasi altro servizio
LLMG.

– Grazie a questo pattern, il sistemaG può facilmente supportare nuovi servizi LLMG (come
OpenAI, Claude, ecc.) semplicemente creando nuove classi che implementano l’interfaccia
LLMService, senza modificare il codice che utilizza questi servizi. Ciò garantisce un’elevata
estensibilità e facilità di manutenzione.

4.5.4.5 Classi, interfacce, metodi e attributi:

4.5.4.6 FlinkJobManager

� Descrizione: Implementa un gestore per job Apache FlinkG che configura e orchestra un pipeline
di elaborazione dati in streaming. Costruisce un flusso di dati completo con operazioni di ricezione,
trasformazione e invio di messaggi;

� Attributi:

– streaming env: StreamExecutionEnvironment - Ambiente di esecuzione FlinkG per
l’elaborazione in streaming;

– populated datastream - Stream di dati iniziale popolato dalla sorgente di posizioni;

– keyed stream - Stream partizionato (keyed) in base all’identificatore della posizione;

– validated stream - Stream filtrato contenente solo le posizioni validate;

– mapped stream - Stream con dati trasformati dal formato di input al formato di output;

– filtered stream - Stream finale filtrato prima dell’invio al sink.

� Operazioni:

– init (self, streaming env istance: StreamExecutionEnvironment,

map function implementation: MapFunction, filter validator implementation:

FilterFunction, filter function implementation: FilterFunction,

position receiver istance: IPositionReceiver, message sender istance:

IMessageWriter) - Costruttore che configura l’intero pipeline di elaborazione dati. Inizializza
l’ambiente di streaming, crea uno stream di dati dalla sorgente, applica operazioni di chiave,
validazione, mappatura e filtraggio, e configura il sink per l’output;

– execute(self) - Avvia l’esecuzione del job FlinkG con l’identificatore ”Flink Job”.

4.5.4.7 IMessageWriter

� Descrizione: Implementa un’interfaccia astratta che definisce il contratto per i componenti di
scrittura dei messaggi. Rappresenta una porta in uscita (outbound port) nel sistemaG, responsabile
di fornire un meccanismo standardizzato per scrivere messaggi verso sistemi esterni;

� Attributi:

– Nessun attributo definito a livello di interfaccia.

42

SPECIFICA TECNICA v1.0.0

� Operazioni:

– get message writer(self) - Metodo astratto che deve essere implementato dalle sottoclassi
per fornire l’istanza concreta dello scrittore di messaggi. L’implementazione dipenderà dal
sistemaG di destinazione specifico (ad esempio, un sink KafkaG o un altro sistemaG di mes-
saggistica).

4.5.4.8 KafkaMessageWriter

� Descrizione: Implementa l’interfaccia IMessageWriter per fornire un adattatore specifico per la
scrittura di messaggi su Apache KafkaG. Configura e costruisce un sink KafkaG per l’integrazione
con il pipeline di elaborazione dati di Apache FlinkG;

� Attributi:

– current configuration: KafkaWriterConfiguration - Configurazione contenente i
parametri necessari per la connessione a KafkaG e la serializzazione dei messaggi;

– position serializer - Schema di serializzazione per convertire gli oggetti di posizione in
formato JSONG;

– record serializer: KafkaRecordSerializationSchema - Schema di serializzazione per
i record KafkaG che include sia la chiave che il valore;

– kafka sink: KafkaSink - Componente sink di FlinkG configurato per scrivere su KafkaG.

� Operazioni:

– init (self, kafkaG writer configuration: KafkaWriterConfiguration,

serialize adapter: JsonRowSerializationAdapter) - Costruttore che inizializza
l’adattatore con la configurazione KafkaG e l’adattatore di serializzazione JSONG, e costruisce
il serializzatore di record e il sink KafkaG;

– build record serializer(self) - Metodo privato che costruisce lo schema di serializzazione
per i record KafkaG, configurando il topicG di destinazione, lo schema di serializzazione della
chiave e dello schema di serializzazione del valore;

– build kafka sink(self) - Metodo privato che costruisce il sink KafkaG utilizzando i server
bootstrap e il serializzatore di record precedentemente configurati;

– get message writer(self) - Implementazione del metodo dell’interfaccia che restituisce
l’istanza del sink KafkaG configurato, pronto per essere utilizzato nel pipeline FlinkG.

4.5.4.9 JsonRowSerializationAdapter

� Descrizione: Implementa un adattatore per la serializzazione di dati in formato JSONG. Incapsula
la configurazione e la creazione di uno schema di serializzazione JSONG per l’uso nei flussi di dati
di Apache FlinkG;

� Attributi:

– row type info message - Informazioni sul tipo di riga che definisce la struttura dei dati da
serializzare. Specifica lo schema e i tipi di dati per il processoG di serializzazione JSONG.

� Operazioni:

– init (self, row type config message) - Costruttore che inizializza l’adattatore con le
informazioni di tipo necessarie per definire la struttura dei messaggi da serializzare;

– get serialization schema(self) - Restituisce uno schema di serializzazione JSONG config-
urato con le informazioni di tipo fornite. Lo schema creato può essere utilizzato per convertire
oggetti FlinkG Row in stringhe JSONG formattate secondo lo schema definito.

43

SPECIFICA TECNICA v1.0.0

4.5.4.10 KafkaWriterConfiguration

� Descrizione: Implementa una classe di dati (dataclass) che contiene la configurazione necessaria
per scrivere messaggi su Apache KafkaG dal pipeline FlinkG. Definisce sia i parametri di connessione
sia la struttura dei dati da serializzare;

� Attributi:

– bootstrap servers: str - Indirizzo e porta dei server bootstrap KafkaG. Il valore pre-
definito è ”kafka:9092”;

– writable topic: str - Nome del topicG KafkaG su cui scrivere i messaggi elaborati. Il
valore predefinito è ”MessageElaborated”;

– key type - Definizione del tipo di chiave per i record KafkaG, strutturata come una riga con
un singolo campo ’user uuid’ di tipo stringa;

– row type info message - Definizione completa dello schema dei messaggi, strutturata come
una riga con nove campi che rappresentano le informazioni dell’utente, dell’attività e del mes-
saggio, con i relativi tipi di dati (stringhe per identificatori e messaggio, float per coordinate
geografiche).

� Operazioni:

– Nessuna operazione esplicita definita, in quanto si tratta di una dataclass che fornisce auto-
maticamente costruttore, rappresentazione in stringa, confronto e altre funzionalità.

4.5.4.11 IPositionReceiver

� Descrizione: Implementa un’interfaccia astratta che definisce il contratto per i componenti di
ricezione delle posizioni. Rappresenta una porta in entrata (inbound port) nel sistemaG, respons-
abile di fornire un meccanismo standardizzato per ricevere dati di posizione da fonti esterne;

� Attributi:

– Nessun attributo definito a livello di interfaccia.

� Operazioni:

– get position receiver(self) - Metodo astratto che deve essere implementato dalle sotto-
classi per fornire l’istanza concreta del ricevitore di posizioni. L’implementazione dipenderà
dalla fonte di dati specifica (ad esempio, un source KafkaG o un altro sistemaG di messaggis-
tica).

4.5.4.12 KafkaPositionReceiver

� Descrizione: Implementa l’interfaccia IPositionReceiver per fornire un adattatore specifico per la
ricezione di posizioni da Apache KafkaG. Configura e costruisce una fonte KafkaG per l’integrazione
con il pipeline di elaborazione dati di Apache FlinkG;

� Attributi:

– current configuration: KafkaSourceConfiguration - Configurazione contenente
i parametri necessari per la connessione a KafkaG e la deserializzazione dei messaggi;

– position deserializer - Schema di deserializzazione per convertire i messaggi JSONG

ricevuti in oggetti di posizione;

– kafka source: KafkaSource - Componente source di FlinkG configurato per leggere da
KafkaG.

� Operazioni:

– init (self, kafka source configuration: KafkaSourceConfiguration,

deserialize adapter: JsonRowDeserializationAdapter) - Costruttore che inizializza
l’adattatore con la configurazione KafkaG e l’adattatore di deserializzazione JSONG, e costru-
isce la fonte KafkaG;

44

SPECIFICA TECNICA v1.0.0

– build kafka source(self) -> KafkaSource - Metodo privato che costruisce la fonte KafkaG
configurando i server bootstrap, il topicG di origine, l’ID del gruppo di consumatori, il deserial-
izzatore e altre proprietà specifiche come l’auto-commit e il commit degli offset sui checkpoint;

– get position receiver(self) - Implementazione del metodo dell’interfaccia che restituisce
l’istanza della fonte KafkaG configurata, pronta per essere utilizzata nel pipeline FlinkG.

4.5.4.13 JsonRowDeserializationAdapter

� Descrizione: Implementa un adattatore per la deserializzazione di dati in formato JSONG. Incap-
sula la configurazione e la creazione di uno schema di deserializzazione JSONG per l’uso nei flussi
di dati di Apache FlinkG;

� Attributi:

– row type info - Informazioni sul tipo di riga che definisce la struttura dei dati da deserial-
izzare. Specifica lo schema e i tipi di dati per il processoG di deserializzazione JSONG.

� Operazioni:

– init (self, row type config) - Costruttore che inizializza l’adattatore con le informazioni
di tipo necessarie per definire la struttura dei messaggi da deserializzare;

– get deserialization schema(self) - Restituisce uno schema di deserializzazione JSONG

configurato con le informazioni di tipo fornite. Lo schema creato può essere utilizzato per
convertire stringhe JSONG in oggetti FlinkG Row strutturati secondo lo schema definito.

4.5.4.14 KafkaSourceConfiguration

� Descrizione: Implementa una classe di dati (dataclass) che contiene la configurazione necessaria
per leggere messaggi da Apache KafkaG nel pipeline FlinkG. Definisce sia i parametri di connessione
sia la struttura dei dati da deserializzare;

� Attributi:

– bootstrap servers: str - Indirizzo e porta dei server bootstrap KafkaG. Il valore pre-
definito è ”kafka:9092”;

– source topic: str - Nome del topicG KafkaG da cui leggere i messaggi di posizione. Il
valore predefinito è ”SimulatorPosition”;

– group id: str - Identificatore del gruppo di consumatori KafkaG. Il valore predefinito è
”pyfinkJob”;

– enable auto commit: str - Flag che indica se abilitare il commit automatico degli offset. Il
valore predefinito è ”true”;

– commit offsets on checkpoint: str - Flag che indica se commettere gli offset durante i
checkpoint FlinkG. Il valore predefinito è ”true”;

– row type - Definizione dello schema di deserializzazione delle posizioni, strutturato come una
riga con quattro campi: ’user uuid’ (string), ’latitude’ (float), ’longitude’ (float) e ’received at’
(string).

� Operazioni:

– Nessuna operazione esplicita definita, in quanto si tratta di una dataclass che fornisce auto-
maticamente costruttore, rappresentazione in stringa, confronto e altre funzionalità.

4.5.4.15 FilterMessageValidator

� Descrizione: Implementa la classe FilterFunction di Apache FlinkG per filtrare messaggi KafkaG
invalidi o potenzialmente dannosi. Esegue diversi controlli di validazione sui dati ricevuti per
garantire l’integrità e la sicurezza del pipeline di elaborazione;

� Attributi:

45

SPECIFICA TECNICA v1.0.0

– Nessun attributo specifico definito nella classe.

� Operazioni:

– open(self, runtime context) - Metodo che viene chiamato all’inizializzazione della funzione
di filtro. Non implementa operazioni specifiche in questa versione;

– filter(self, value) - Implementa il metodo dell’interfaccia FilterFunction per determinare
quali messaggi devono essere mantenuti nel flusso. Esegue diversi controlli di validazione:

* Verifica che latitudine e longitudine siano valori numerici e rientrino nei range geografici
validi (-90 ¡= lat ¡= 90, -180 ¡= lon ¡= 180);

* Controlla che il timestamp sia in un formato valido (’%Y-%m-%d %H:%M:%S’).;

* Verifica che l’ID utente sia un UUID valido di versione 4;

* Analizza tutti i valori di tipo stringa per identificare pattern sospetti di SQLG injection
(come ”–”, ”;”, comandi SQLG come ”DROP”, ”DELETE”, ecc.).

Restituisce True solo se tutti i controlli di validazione vengono superati, altrimenti restituisce
False per scartare il messaggio dal flusso.

4.5.4.16 PositionToMessageProcessor

� Descrizione: Implementa la classe MapFunction di Apache FlinkG per trasformare dati di po-
sizione in messaggi personalizzati. Utilizza un servizio di intelligenza artificiale per generare con-
tenuti pubblicitari contestuali basati sulla posizione dell’utente e sulle attività disponibili nelle
vicinanze;

� Attributi:

– ai service: LLMService - Servizio di modello di linguaggio (LLM) utilizzato per generare
contenuti pubblicitari personalizzati;

– user repository: IUserRepository - RepositoryG per accedere alle informazioni sugli
utenti;

– activity repository: IActivityRepository - RepositoryG per recuperare attività com-
merciali nelle vicinanze dell’utente;

– message serializer: IFlinkSerializable - Componente per serializzare i messaggi nel
formato richiesto da FlinkG;

– prompt creator: CustomPrompt - Generatore di prompt per l’interazione con il servizio
LLMG.

� Operazioni:

– init (self, ai chatbot service: LLMService, user repository: IUserRepository,

activity repository: IActivityRepository, message serializer: IFlinkSerializable)

- Costruttore che inizializza il processore con i servizi e repositoryG necessari;

– open(self, runtime context) - Metodo chiamato all’inizializzazione del pipeline FlinkG.
Configura il servizio LLMG e inizializza il generatore di prompt;

– map(self, value) - Implementa il metodo dell’interfaccia MapFunction per trasformare i dati
di posizione in messaggi. Esegue il seguente processoG:

* Recupera le informazioni dell’utente associato al sensore;

* Trova le attività commerciali nel raggio di 300 metri dalla posizione;

* Se non ci sono attività nelle vicinanze, restituisce un messaggio segnaposto;

* Altrimenti, genera un prompt personalizzato basato sull’utente e sulle attività;

* Invoca il servizio LLMG per ottenere una risposta strutturata;

* Recupera le informazioni dettagliate sull’attività selezionata;

* Crea un oggetto MessageDTO con il contenuto pubblicitario generato;

* Serializza il messaggio nel formato Row di FlinkG per l’elaborazione successiva.

46

SPECIFICA TECNICA v1.0.0

4.5.4.17 LLMService

� Descrizione: Implementa un’interfaccia astratta che definisce il contratto per servizi di modelli
linguistici (LLM). Fornisce una struttura comune per interagire con diversi modelli di linguaggio e
ottenere risposte strutturate in un formato predefinito.

� Attributi:

– llm structured response: BaseModel - Modello Pydantic che definisce la struttura attesa
per la risposta del modello linguistico.

� Operazioni:

– init (self, structured response: BaseModel) - Costruttore che inizializza il servizio
con un modello Pydantic che definisce la struttura della risposta attesa dal modello linguistico;

– set up chat(self) - Metodo astratto che deve essere implementato dalle sottoclassi per in-
izializzare e configurare la sessione di chat con il modello linguistico;

– get llm structured response(self, prompt) - Metodo astratto che deve essere implemen-
tato dalle sottoclassi per inviare un prompt al modello linguistico e ottenere una risposta
strutturata secondo il modello Pydantic definito.

4.5.4.18 CustomPrompt

� Descrizione: Implementa un generatore di prompt personalizzati per l’interazione con modelli
linguistici. Utilizza un template predefinito per costruire richieste strutturate che mirano a ottenere
messaggi pubblicitari contestualizzati in base alle informazioni dell’utente e alle attività commerciali
disponibili;

� Attributi:

– template: Template - Template di stringa che definisce la struttura del prompt, con vari-
abili per inserire dinamicamente informazioni sull’utente e sulle attività commerciali.

� Operazioni:

– init (self) - Costruttore che inizializza il generatore di prompt con un template pre-
definito. Il template include istruzioni per il modello linguistico su come generare un messag-
gio pubblicitario personalizzato, con criteri specifici per la selezione dell’attività e vincoli sul
formato della risposta;

– get prompt(self, user info dict, activity dict) - Genera un prompt personalizzato sos-
tituendo le variabili del template con le informazioni specifiche dell’utente e l’elenco delle at-
tività disponibili. Formatta le attività come una lista puntata e restituisce il prompt completo
pronto per essere inviato al modello linguistico.

4.5.4.19 StructuredResponseMessage

� Descrizione: Implementa un modello Pydantic che definisce la struttura della risposta attesa dal
modello linguistico. Garantisce che le risposte generate soddisfino un formato predefinito, facilitando
l’elaborazione e la validazione automatica dei dati ricevuti;

� Attributi:

– pubblicita: str - Campo che contiene il messaggio pubblicitario generato dal modello lin-
guistico. Deve essere lungo almeno 200 caratteri come specificato nella descrizione del campo;

– attivita: str - Campo che contiene il nome dell’azienda selezionata tra quelle proposte per
cui è stato prodotto l’annuncio pubblicitario.

� Operazioni:

– Nessuna operazione esplicita definita, in quanto si tratta di un modello Pydantic che fornisce
automaticamente funzionalità di validazione, serializzazione, deserializzazione e altre funzion-
alità di gestione dei dati.

47

SPECIFICA TECNICA v1.0.0

4.5.4.20 GroqLLMService

� Descrizione: Implementa una classe concreta che estende l’interfaccia LLMService per interagire
specificamente con l’API GroqG. Configura e gestisce una connessione a un modello linguistico di
GroqG, con controllo della frequenza delle richieste e gestione delle risposte strutturate;

� Attributi:

– groq api key: str - Chiave APIG per autenticarsi al servizio GroqG, recuperata dalle
variabili d’ambiente;

– chat: ChatGroq - Istanza del client di chat GroqG configurata con parametri specifici per
l’interazione con il modello linguistico.

� Operazioni:

– init (self, structured response) - Costruttore che inizializza il servizio ereditando
dalla classe base e configurando la chiave APIG GroqG dalle variabili d’ambiente;

– set up chat(self) - Implementa il metodo astratto della classe base per inizializzare il client
di chat GroqG. Configura un rate limiter per controllare la frequenza delle richieste APIG
(circa una ogni 15 secondi) e inizializza il client ChatGroq con parametri specifici come il
modello ”Gemma2-9b-it”, temperatura di generazione, e altre configurazioni per la gestione
delle richieste;

– get llm structured response(self, prompt) - Implementa il metodo astratto della classe
base per inviare un prompt al modello GroqG e ottenere una risposta strutturata. Utilizza la
funzionalità ”with structured output” del client ChatGroq per forzare la risposta nel formato
definito dal modello Pydantic specificato nella classe base.

4.5.4.21 IActivityRepository

� Descrizione: Implementa un’interfaccia astratta che definisce il contratto per i repositoryG di
gestione delle attività commerciali. Stabilisce i metodi necessari per recuperare informazioni sulle
attività in base al nome o alla posizione geografica;

� Attributi:

– Nessun attributo definito a livello di interfaccia.

� Operazioni:

– get activity spec from name(self, activity name) -> ActivityDTO - Metodo astratto
che deve essere implementato dalle sottoclassi per recuperare le specifiche dettagliate di un’attività
commerciale in base al suo nome. Restituisce un oggetto ActivityDTO contenente tutte le in-
formazioni sull’attività;

– get activities in range(self, lon, lat, max distance) -> list - Metodo astratto che
deve essere implementato dalle sottoclassi per recuperare un elenco di attività commerciali sit-
uate entro una distanza massima specificata da una data posizione geografica. Prende in input
le coordinate (longitudine e latitudine) e la distanza massima, e restituisce una lista di attività
nelle vicinanze.

4.5.4.22 ClickhouseActivityRepository

� Descrizione: Implementa la classe concreta che realizza l’interfaccia IActivityRepository per recu-
perare informazioni sulle attività commerciali da un databaseG ClickhouseG. Fornisce metodi per
cercare attività in base alla vicinanza geografica e al nome;

� Attributi:

– db conn: DatabaseConnection - Connessione al databaseG ClickhouseG utilizzata per es-
eguire queryG sui dati delle attività.

� Operazioni:

48

SPECIFICA TECNICA v1.0.0

– init (self, db connection: DatabaseConnection) - Costruttore che inizializza il repositoryG
con una connessione al databaseG;

– get activities in range(self, lon, lat, max distance) -> list - Implementa il metodo
dell’interfaccia per trovare attività commerciali entro una distanza specificata da una posizione
geografica. Esegue una queryG SQLG che utilizza la funzione geoDistance per calcolare la dis-
tanza tra la posizione fornita e ogni attività, restituendo quelle che si trovano entro la distanza
massima specificata. Il risultato comprende nome, indirizzo, tipo, descrizione e distanza cal-
colata;

– get activity spec from name(self, activity name) -> ActivityDTO - Implementa il
metodo dell’interfaccia per recuperare i dettagli completi di un’attività in base al suo nome.
Esegue una queryG SQLG che cerca un’attività con il nome esatto fornito e costruisce un
oggetto ActivityDTO con tutti i dati recuperati (UUID, nome, coordinate, indirizzo, tipo e
descrizione). Se nessuna attività corrisponde al nome, restituisce un ActivityDTO vuoto.

4.5.4.23 ActivityDTO

� Descrizione: Implementa un oggetto di trasferimento dati (Data Transfer Object) per la classe
Activity. Viene utilizzato per astrarre e incapsulare i dati delle attività commerciali, facilitando il
trasferimento delle informazioni tra i diversi strati dell’applicazione senza esporre i dettagli imple-
mentativi;

� Attributi:

– activity id: uuid - Identificatore univoco dell’attività commerciale;

– activity name: str - Nome dell’attività commerciale;

– activity lon: float - Longitudine della posizione geografica dell’attività;

– activity lat: float - Latitudine della posizione geografica dell’attività;

– activity addr: str - Indirizzo fisico dell’attività commerciale;

– activity type: str - Categoria o tipo di attività commerciale (es. Ristorante, Negozio,
Servizio);

– activity description: str - Descrizione dettagliata dell’attività commerciale.

� Operazioni:

– init (self, activity id: uuid = uuid.uuid4(), activity name: str = "",

activity lon: float = 0.0, activity lat: float = 0.0, activity addr: str ="",

activity type: str = "", activity description: str ="") - Costruttore che inizial-
izza l’oggetto DTO con tutti i dati dell’attività, fornendo valori predefiniti per tutti i parametri
in modo da poter istanziare anche un oggetto vuoto.

4.5.4.24 IUserRepository

� Descrizione: Implementa un’interfaccia astratta che definisce il contratto per i repositoryG di
gestione degli utenti nel contesto dell’applicazione FlinkG. Stabilisce il metodo necessario per
recuperare le informazioni di un utente in base all’identificatore del sensore associato;

� Attributi:

– Nessun attributo definito a livello di interfaccia.

� Operazioni:

– get user who owns sensor(self, sensor uuid) -> UserDTO - Metodo astratto che deve es-
sere implementato dalle sottoclassi per recuperare i dati dell’utente proprietario di un sensore
specifico. Prende in input l’UUID del sensore e restituisce un oggetto UserDTO contenente
tutte le informazioni dell’utente associato.

49

SPECIFICA TECNICA v1.0.0

4.5.4.25 ClickhouseUserRepository

� Descrizione: Implementa la classe concreta che realizza l’interfaccia IUserRepository per recuper-
are informazioni sugli utenti da un databaseG ClickhouseG. Fornisce un metodo per trovare un
utente in base all’UUID del sensore a lui assegnato, recuperando anche i suoi interessi;

� Attributi:

– db conn: DatabaseConnection - Connessione al databaseG ClickhouseG utilizzata per es-
eguire queryG sui dati degli utenti.

� Operazioni:

– init (self, db connection: DatabaseConnection) - Costruttore che inizializza il repositoryG
con una connessione al databaseG;

– get user who owns sensor(self, sensor uuid) -> UserDTO - Implementa il metodo
dell’interfaccia per recuperare i dati dell’utente associato a un sensore specifico. Esegue una
queryG SQLG complessa che unisce le tabelle user e user interest per ottenere tutti i dati
dell’utente e i suoi interessi in un’unica operazione. La queryG filtra gli utenti in base all’UUID
del sensore fornito, raggruppa i risultati per i campi dell’utente e utilizza la funzione groupAr-
ray per aggregare gli interessi in un array. Restituisce un oggetto UserDTO popolato con tutti
i dati recuperati, incluso l’elenco degli interessi, o None se nessun utente è associato al sensore
specificato.

4.5.4.26 UserDTO

� Descrizione: Implementa un oggetto di trasferimento dati (Data Transfer Object) per la classe
User nel contesto dell’applicazione FlinkG. Viene utilizzato per astrarre e incapsulare i dati degli
utenti, facilitando il trasferimento delle informazioni tra i diversi strati dell’applicazione senza es-
porre i dettagli implementativi;

� Attributi:

– user uuid: uuid - Identificatore univoco dell’utente;

– assigned sensor uuid: uuid - Identificatore univoco del sensore assegnato all’utente;

– name: str - Nome dell’utente;

– surname: str - Cognome dell’utente;

– email: str - Indirizzo email dell’utente;

– gender: str - Genere dell’utente;

– birthdate: str - Data di nascita dell’utente;

– civil status: str - Stato civile dell’utente;

– interests: list[str] - Lista degli interessi dell’utente, opzionale (default None).

� Operazioni:

– init (self, user uuid: uuid, assigned sensor uuid: uuid, name: str, surname:

str, email: str, gender: str, birthdate: str, civil status: str, interests:

list[str] = None) - Costruttore che inizializza l’oggetto DTO con tutti i dati dell’utente,
includendo una lista opzionale di interessi che può essere None se non specificata.

4.5.4.27 IMessageRepository

� Descrizione: Implementa un’interfaccia astratta che definisce il contratto per i repositoryG di ges-
tione dei messaggi. Stabilisce il metodo necessario per verificare se un’attività è già stata mostrata
a un utente specifico, permettendo cos̀ı di evitare ripetizioni nei messaggi pubblicitari;

� Attributi:

– Nessun attributo definito a livello di interfaccia.

50

SPECIFICA TECNICA v1.0.0

� Operazioni:

– check activity already displayed for user(self, user id: str, activity id: str)

-> bool - Metodo astratto che deve essere implementato dalle sottoclassi per verificare se una
specifica attività commerciale è già stata mostrata a un determinato utente. Prende in input
l’identificatore dell’utente e l’identificatore dell’attività, e restituisce un valore booleano: True
se l’attività è già stata mostrata all’utente, False altrimenti.

4.5.4.28 ClickhouseMessageRepository

� Descrizione: Implementa la classe concreta che realizza l’interfaccia IMessageRepository per ge-
stire i messaggi in un databaseG ClickhouseG. Fornisce funzionalità per verificare se un messaggio
pubblicitario relativo a una specifica attività è già stato mostrato a un determinato utente;

� Attributi:

– db conn: DatabaseConnection - Connessione al databaseG ClickhouseG utilizzata per es-
eguire queryG sui dati dei messaggi.

� Operazioni:

– init (self, db connection: DatabaseConnection) - Costruttore che inizializza il repositoryG
con una connessione al databaseG;

– check activity already displayed for user(self, user id: str, activity id: str)

-> bool - Implementa il metodo dell’interfaccia per verificare se una specifica attività è già
stata mostrata a un determinato utente. Esegue una queryG SQLG che cerca nella tabella dei
messaggi record con l’UUID dell’utente e l’UUID dell’attività specificati. Restituisce True se
trova almeno un record corrispondente (indicando che l’attività è già stata mostrata all’utente),
False altrimenti;

– get user last message(self, user id) -> MessageDTO - Metodo commentato (non attivo)
che recupererebbe l’ultimo messaggio inviato a un utente specifico. La queryG SQLG cercherebbe
tutti i messaggi per l’utente specificato, ordinandoli per data di creazione in ordine decrescente
e limitando il risultato a un solo record (il più recente). Restituirebbe un oggetto MessageDTO
popolato con tutti i dati del messaggio.

4.5.4.29 MessageDTO

� Descrizione: Implementa un oggetto di trasferimento dati (Data Transfer Object) per la classe
Message. Viene utilizzato per astrarre e incapsulare i dati dei messaggi pubblicitari, facilitando il
trasferimento delle informazioni tra i diversi strati dell’applicazione e mantenendo le relazioni con
utenti e attività commerciali;

� Attributi:

– user id: str - Identificatore univoco dell’utente a cui è destinato il messaggio;

– activity id: str - Identificatore univoco dell’attività commerciale a cui si riferisce il mes-
saggio;

– message id: str - Identificatore univoco del messaggio stesso;

– message text: str - Contenuto testuale del messaggio pubblicitario;

– activity lat: float - Coordinata di latitudine dell’attività commerciale;

– activity lon: float - Coordinata di longitudine dell’attività commerciale;

– creation time: str - Timestamp che indica quando è stato creato il messaggio;

– user lat: float - Coordinata di latitudine dell’utente al momento della creazione del mes-
saggio;

– user lon: float - Coordinata di longitudine dell’utente al momento della creazione del
messaggio.

� Operazioni:

51

SPECIFICA TECNICA v1.0.0

– init (self, user id: uuid = uuid.uuid4(), activity id: uuid = uuid.uuid4(),

message id: uuid = uuid.uuid4(), message text: str = "", activity lat: float

= 0.0, activity lon: float = 0.0, creation time: str = "", user lat: float =

0.0, user lon: float = 0.0) - Costruttore che inizializza l’oggetto DTO con tutti i dati
del messaggio, fornendo valori predefiniti per tutti i parametri in modo da poter istanziare
anche un oggetto vuoto. Converte automaticamente gli UUID in stringhe per facilitare la
serializzazione.

4.5.4.30 DatabaseConnection

� Descrizione: Implementa una classe che gestisce la connessione al databaseG ClickhouseG nel
contesto dell’applicazione FlinkG. Fornisce metodi per stabilire e chiudere connessioni al databaseG,
incapsulando i dettagli di configurazione e gestione della connessione;

� Attributi:

– host: str - Indirizzo del server ClickhouseG, derivato dai parametri di configurazione;

– port: int - Porta sulla quale il server ClickhouseG accetta connessioni, derivata dai parametri
di configurazione;

– user: str - Nome utente per l’autenticazione al databaseG, derivato dai parametri di con-
figurazione;

– password: str - Password per l’autenticazione al databaseG, derivata dai parametri di con-
figurazione;

– connection - Oggetto connessione al databaseG ClickhouseG, inizialmente impostato a None.

� Operazioni:

– init (self, config parameters: DatabaseConfigParameters) - Costruttore che in-
izializza l’oggetto connessione con i parametri di configurazione del databaseG forniti;

– connect(self) - Stabilisce una connessione al databaseG ClickhouseG utilizzando i parametri
configurati e restituisce l’oggetto client di connessione. Utilizza la libreria clickhouseG connect
per creare il client con i parametri di host, porta, nome utente e password;

– disconnect(self) - Chiude la connessione al databaseG se attiva e reimposta l’attributo
connection a None.

4.5.4.31 DatabaseConfigParameters

� Descrizione: Implementa una classe di dati (dataclass) che contiene i parametri di configurazione
necessari per la connessione a un databaseG ClickhouseG nel contesto dell’applicazione FlinkG.
Fornisce una struttura semplice per incapsulare e trasportare le impostazioni di configurazione del
databaseG in modo tipizzato;

� Attributi:

– host: str - Indirizzo del server ClickhouseG. Il valore predefinito è ”clickhouse”;

– port: str - Porta sulla quale il server ClickhouseG accetta connessioni. Il valore predefinito
è ”8123”;

– user: str - Nome utente per l’autenticazione al databaseG. Il valore predefinito è ”default”;

– password: str - Password per l’autenticazione al databaseG. Il valore predefinito è ”pass”.

� Operazioni:

– Nessuna operazione esplicita definita, in quanto si tratta di una dataclass che fornisce auto-
maticamente costruttore, rappresentazione in stringa, confronto e altre funzionalità.

52

SPECIFICA TECNICA v1.0.0

4.5.4.32 IFlinkSerializable

� Descrizione: Implementa un’interfaccia astratta che definisce il contratto per la serializzazione di
oggetti in formato Row di Apache FlinkG. Stabilisce il metodo necessario per convertire oggetti di
dominio (in particolare MessageDTO) nel formato di riga utilizzato da FlinkG per elaborare i dati
nel pipeline;

� Attributi:

– Nessun attributo definito a livello di interfaccia.

� Operazioni:

– create row from message(self, message to serialize: MessageDTO) -> Row - Metodo
astratto che deve essere implementato dalle sottoclassi per convertire un oggetto MessageDTO
in un oggetto Row di FlinkG. Prende in input un’istanza di MessageDTO contenente i dati del
messaggio e restituisce un oggetto Row che rappresenta questi dati in un formato compatibile
con l’elaborazione FlinkG.

4.5.4.33 MessageSerializer

� Descrizione: Implementa la classe concreta che realizza l’interfaccia IFlinkSerializable per la se-
rializzazione di oggetti MessageDTO in oggetti Row di Apache FlinkG. Fornisce una conversione
strutturata dei dati di messaggio nel formato richiesto dal pipeline di elaborazione FlinkG;

� Attributi:

– Nessun attributo specifico definito nella classe.

� Operazioni:

– create row from message(self, message to serialize: MessageDTO) -> Row

- Implementa il metodo dell’interfaccia per convertire un oggetto MessageDTO in un oggetto
Row di FlinkG. Crea una nuova istanza di Row inserendo ordinatamente tutti i campi del
messaggio: identificatore dell’utente, identificatore dell’attività, identificatore del messaggio,
testo del messaggio, coordinate geografiche dell’attività (latitudine e longitudine), timestamp
di creazione, e coordinate geografiche dell’utente (latitudine e longitudine). Garantisce che gli
identificatori siano convertiti in stringhe per una corretta serializzazione.

4.5.4.34 FilterMessageAlreadyDisplayed

� Descrizione: Implementa la classe FilterFunction di Apache FlinkG per filtrare messaggi pubblic-
itari che sono già stati mostrati a un utente specifico o che non contengono informazioni geografiche
valide. È parte del pipeline di elaborazione che garantisce che gli utenti non ricevano ripetutamente
lo stesso messaggio pubblicitario;

� Attributi:

– local repository: IMessageRepository - RepositoryG che fornisce metodi per verificare
se un messaggio pubblicitario è già stato mostrato a un utente.

� Operazioni:

– init (self, message repository: IMessageRepository) - Costruttore che inizializza
il filtro con un repositoryG di messaggi per accedere ai dati storici;

– open(self, runtime context) - Metodo che viene chiamato all’inizializzazione della funzione
di filtro. Non implementa operazioni specifiche in questa versione;

– filter(self, value) - Implementa il metodo dell’interfaccia FilterFunction per determinare
quali messaggi devono essere mantenuti nel flusso. Esegue due controlli principali:

* Verifica se l’attività pubblicizzata nel messaggio è già stata mostrata all’utente utilizzando
il metodo del repositoryG;

* Controlla se le coordinate dell’attività sono valide (diverse da zero).

53

SPECIFICA TECNICA v1.0.0

Restituisce False (scartando il messaggio) se l’attività è già stata mostrata all’utente o se le
coordinate sono (0,0), indicando un messaggio segnaposto o non valido. Altrimenti restituisce
True, permettendo al messaggio di proseguire nel pipeline.

Include anche una versione commentata di un algoritmo alternativo che avrebbe utilizzato
l’ultimo messaggio mostrato all’utente per determinare se le stesse coordinate geografiche sono
state già utilizzate.

4.5.5 ClickHouse

Nel progettoG ClickhouseG è stato scelto come databaseG data la possibilità di gestire sia dati time series
sia dati geospaziali. Inoltre, questa soluzione ha offerto numerosi vantaggi in termini di performance e
scalabilità del sistemaG.

4.5.5.1 Architettura MergeTree
Uno dei fattori che migliora le performance di ClickhouseG è il motore MergeTree. Ovvero a differenza
dei databaseG tradizionali, MergeTree è ottimizzato per l’inserimento di grandi volumi di dati e queryG
analitiche complesse grazie alle seguenti caratteristiche:

- Archiviazione colonnare: I dati sono organizzati per colonne anziché per righe, permettendo:

. Compressione più efficiente: le tecniche di archiviazione colonnare consentono una compres-
sione da 10 a 100 volte superiore rispetto ai databaseG orientati a righe, grazie all’ottimizzazione
di dati simili in ogni colonna;

. I/O significativamente ridotto: le queryG che richiedono solo un sottoinsieme di colonne leg-
gono solo i dati necessari, riducendo l’input/output complessivo;

. Elaborazione vettoriale che sfrutta le istruzioni SIMD (Single Instruction, Multiple Data):
questo approccio permette al processore di eseguire la stessa operazione su più dati con-
temporaneamente, migliorando notevolmente le performance nelle operazioni di calcolo e ag-
gregazione.

- Organizzazione in parti (parts): I dati vengono inseriti in parti separate che vengono PoIG fuse
in background:

. Le nuove scritture vengono gestite in ”parti” temporanee separate, garantendo che ogni batch
di dati sia isolato, cos̀ı da evitare conflitti e consentire una rapida acquisizione dei dati;

. Un processoG di mergeG periodico raccoglie queste parti piccole e le unisce in unità più grandi,
ottimizzando la compressione e l’organizzazione dei dati per queryG più efficienti;

. Questo approccio permette di realizzare inserimenti massivi senza bloccare le operazioni di
lettura, assicurando alta disponibilità e bassa latenza per le queryG.

- Indici sparsi: Ogni parte contiene un indice sparso per le colonne di ordinamento:

. L’indice segmenta i dati in blocchi di 8192 righe, il che facilita una migliore organizzazione
interna e favorisce una compressione più efficiente;

. Per ogni blocco vengono registrati i valori minimi e massimi delle chiavi di ordinamento,
fornendo un riassunto che consente di identificare rapidamente i range interessanti durante le
queryG;

. Durante l’esecuzione delle queryG, l’uso dei min/max permette di saltare interi blocchi che
non contengono valori rilevanti, riducendo l’I/O e migliorando le prestazioni.

- Partizionamento primario: I dati vengono suddivisi fisicamente in base a una chiave di par-
tizione:

1 PARTITION BY toYYYYMMDD(received_at)

. Ogni partizione viene memorizzata in una directory separata, il che consente una gestione
isolata dei dati e semplifica il backup e il ripristino di segmenti specifici;

. Le queryG possono escludere intere partizioni non rilevanti, riducendo il carico I/O e miglio-
rando notevolmente le prestazioni durante le operazioni di ricerca;

54

SPECIFICA TECNICA v1.0.0

. Questa organizzazione agevola operazioni di manutenzione mirate (come l’eliminazione o il
trasferimento di dati storici), minimizzando l’impatto sul sistemaG complessivo.

- Ordinamento primario: I dati all’interno di ogni partizione sono fisicamente ordinati:

1 ORDER BY (sensor_id, received_at)

. L’ordinamento fisico accelera le ricerche per intervallo su queste colonne, consentendo di indi-
viduare rapidamente i record richiesti;

. Raggruppare valori simili migliora la compressione, riducendo lo spazio su disco e ottimizzando
i tempi di lettura;

. Inoltre, definire l’ordine dei dati facilita la creazione e l’utilizzo efficiente degli indici sparsi,
ottimizzando le prestazioni complessive delle queryG.

4.5.5.2 Schema del database
Lo schema del databaseG comprende le seguenti tabelle principali:

Figure 9: Schema del databaseG

- attivita: Contiene i punti di interesse con coordinate geografiche e altri dati come nome, descrizione
e tipo.

55

SPECIFICA TECNICA v1.0.0

1 CREATE TABLE nearyou.activity(

2 activity_uuid UUID,

3 name String,

4 longitude Float64,

5 latitude Float64,

6 address String,

7 type String,

8 description String,

9 PRIMARY KEY(activity_uuid)

10) ENGINE = MergeTree()

11 ORDER BY activity_uuid;

Questa tabella archivia le informazioni sui punti di interesse come negozi, ristoranti e attrazioni
turistiche per cui verranno generati i messaggi pubblicitari personalizzati.

- interesseUtente: Contiene gli utenti e le loro preferenze.

1 CREATE TABLE nearyou.user_interest(

2 user_uuid UUID,

3 interest String,

4 PRIMARY KEY(user_uuid, interest)

5) ENGINE = MergeTree()

6 ORDER BY (user_uuid, interest);

Questa tabella serve a collegare gli utenti ai loro interessi, consentendo di scegliere le attività per
cui generare i messaggi in base agli interessi.

- messageFromLLM: Memorizza i messaggi pubblicitari generati dall’LLM e successivamente pub-
blicati sul topicG kafkaG.

1 CREATE TABLE nearyou.messageTableKafka

2 (

3 user_uuid UUID,

4 activity_uuid UUID,

5 message_uuid UUID,

6 message String,

7 activityLatitude Float64,

8 activityLongitude Float64,

9 creationTime String,

10 userLatitude Float64,

11 userLongitude Float64

12) ENGINE = Kafka()

13 SETTINGS

14 kafka_broker_list = ’kafka:9092’,

15 kafka_topic_list = ’MessageElaborated’,

16 kafka_group_name = ’clickhouseConsumerMessage’,

17 kafka_format = ’JSONEachRow’;

Questa tabella funziona da consumer per il topicG KafkaG ”MessageElaborated”, permettendo di
ricevere e memorizzare i messaggi pubblicitari generati dall’LLM in tempo reale.

1 CREATE TABLE nearyou.messageTable

2 (

3 user_uuid UUID,

4 activity_uuid UUID,

5 message_uuid UUID,

6 message String,

7 activityLatitude Float64,

8 activityLongitude Float64,

9 creationTime String,

56

SPECIFICA TECNICA v1.0.0

10 userLatitude Float64,

11 userLongitude Float64

12)

13 ENGINE = MergeTree()

14 PARTITION BY toYYYYMM(toDateTime(creationTime)) -- Partizione per mese basato

sul timestamp di creazione

15 PRIMARY KEY (message_uuid, toStartOfMinute(toDateTime(creationTime)),

creationTime)

16 TTL toDateTime(creationTime) + INTERVAL 1 MONTH -- I dati saranno conservati

per 1 mese

17 SETTINGS index_granularity = 8192;

Questa tabella serve da storage per i messaggi pubblicitari generati e pubblicati sul topicG KafkaG.
Contiene informazioni dettagliate dei messaggi, inclusi gli ID degli utenti e delle attività, delle
coordinate geografiche e il timestamp di creazione.

- positionFromSimulator: Memorizza le posizioni degli utenti generate dal simulatore e pubblicate
sul topicG kafkaG.

1 CREATE TABLE nearyou.positionsKafka (

2 user_uuid UUID,

3 latitude Float64,

4 longitude Float64,

5 received_at String

6) ENGINE = Kafka()

7 SETTINGS

8 kafka_broker_list = ’kafka:9092’,

9 kafka_topic_list = ’SimulatorPosition’,

10 kafka_group_name = ’clickhouseConsumePositions’,

11 kafka_format = ’JSONEachRow’;

Questa tabella funziona da consumer per il topicG KafkaG ”SimulatorPosition”, permettendo di
ricevere e memorizzare le posizioni degli utenti in tempo reale.

1 CREATE TABLE nearyou.positions

2 (

3 user_uuid UUID,

4 latitude Float64,

5 longitude Float64,

6 received_at String

7)

8 ENGINE = MergeTree()

9 PARTITION BY toYYYYMM(toDateTime(received_at)) -- Partizioniamo per mese in

base al campo received_at

10 PRIMARY KEY (user_uuid, toStartOfMinute(toDateTime(received_at)), received_at)

11 TTL toDateTime(received_at) + INTERVAL 1 MONTH -- I dati vengono conservati per

un mese

12 SETTINGS index_granularity = 8192;

Questa tabella funziona da storage per i dati di posizione degli utenti e viene alimentata dalla
tabella KafkaG positionsKafka.

- sensor: Memorizza informazioni sui sensori utilizzati per raccogliere i dati di posizione.

1 CREATE TABLE nearyou.sensor

2 (

3 sensor_uuid UUID PRIMARY KEY,

4 is_occupied Boolean DEFAULT false

5) ENGINE = MergeTree()

6 ORDER BY sensor_uuid;

57

SPECIFICA TECNICA v1.0.0

Questa tabella contiene informazioni sui sensori utilizzati per raccogliere i dati di posizione degli
utenti. Ogni sensore ha un UUID univoco e uno stato di occupazione che può essere aggiornato in
tempo reale. Ogni sensore viene assegnato regolarmente a un utente, e il suo stato di occupazione
viene aggiornato in base alla posizione dell’utente.

- tuttiInteressi: Memorizza un elenco di tutti gli interessi disponibili nel sistemaG.

1 CREATE TABLE nearyou.interest(

2 interest String,

3 PRIMARY KEY(interest)

4) ENGINE = MergeTree()

5 ORDER BY (interest);

Questa tabella contiene un elenco di tutti gli interessi disponibili nel sistemaG. Ogni interesse è
rappresentato da una stringa e viene utilizzato per associare le preferenze degli utenti alle attività
pubblicitarie.

- utente: Memorizza informazioni sui profili utente.

1 CREATE TABLE nearyou.user(

2 user_uuid UUID,

3 assigned_sensor_uuid UUID NULL,

4 name String,

5 surname String,

6 email String,

7 gender String,

8 birthdate Date DEFAULT toDate(now()),

9 civil_status String,

10 PRIMARY KEY(user_uuid)

11) ENGINE = MergeTree()

12 ORDER BY user_uuid;

Questa tabella contiene informazioni sui profili utente, inclusi nome, cognome, email, genere e stato
civile. Ogni utente ha un UUID univoco e può essere associato a un sensore specifico.

4.5.5.2.1 Index Granularity

1 SETTINGS index_granularity = 8192;

L’opzione index granularity in ClickhouseG determina la dimensione del blocco per l’indicizzazione dei
dati. Questo parametro definisce quante righe appartengono a ciascun b̈locco indicë. Con un valore di
8192, ClickhouseG crea un indice per ogni blocco di 8192 righe, memorizzando i valori minimi e massimi
delle colonne di ordinamento in ogni blocco. Tale meccanismo permette al motore di saltare rapidamente
blocchi di dati non pertinenti durante l’esecuzione delle queryG, ottimizzando cos̀ı le prestazioni.

4.5.5.2.2 Partizionamento
In questo progettoG il partizionamento viene fatto su base temporale. In questo caso le tabelle positions
e messageTable sono partizionate per giorno:

1 PARTITION BY toYYYYMMDD(received_at)

Questa strategia di partizionamento:

- Facilita l’eliminazione automatica dei dati storici con TTL;

- Migliora le performance delle queryG che filtrano per intervalli temporali;

- Consente una gestione efficiente dello storage.

58

SPECIFICA TECNICA v1.0.0

4.5.5.2.3 Time-To-Live (TTL)
Il meccanismo TTL in ClickhouseG è una funzionalità essenziale per la gestione di grandi volumi di dati,
consentendo un controllo automatico sul loro ciclo-di-vitaG senza necessità di interventi manuali o script
esterni. ClickhouseG integra il TTL direttamente nel processoG di merging di MergeTree, offrendo tre
diverse tipologie di gestione:

- TTL a livello di tabella: Rimuove intere righe dopo un determinato periodo

1 ALTER TABLE positions

2 MODIFY TTL received_at + INTERVAL 30 DAY;

- TTL a livello di colonna: Permette l’anonimizzazione graduale

1 ALTER TABLE positions

2 MODIFY COLUMN precise_location

3 TTL received_at + INTERVAL 7 DAY SET NULL;

- TTL multi-fase con storage tiering: Ottimizza i costi di archiviazione

1 ALTER TABLE positions

2 MODIFY TTL

3 received_at + INTERVAL 7 DAY TO VOLUME ’hot’,

4 received_at + INTERVAL 30 DAY TO VOLUME ’cold’,

5 received_at + INTERVAL 90 DAY DELETE;

Il TTL viene applicato durante le operazioni di mergeG:

1. Durante il mergeG, il motore verifica la condizione TTL per ogni riga o colonna;

2. Se la condizione è soddisfatta (ad es. il dato è più vecchio del limite), viene applicata l’azione
corrispondente;

3. Se tutte le righe in una partizione vengono eliminate dal TTL, l’intera partizione viene rimossa.

In questo progettoG il TTL viene usato solo a livello di tabella per eliminare automaticamente i dati più
vecchi di 30 giorni: Ad esempio nella tabella delle posizioni:

1 ALTER TABLE positions MODIFY TTL received_at + INTERVAL 30 DAY;

Questa strategia bilancia efficacemente le esigenze di performance con l’ottimizzazione dei costi di storage,
mantenendo uno storico per un periodo abbastanza lungo.

4.5.5.2.4 Materialized Views
Le materialized view rappresentano un elemento fondamentale nell’architettura di questo progettoG,
consentendo di trasformare in tempo reale i dati provenienti dalle tabelle KafkaG in tabelle ClickhouseG
ottimizzate per le queryG. I benefici principali dell’utilizzo delle materialized view sono:

� Prestazioni ottimizzate: Poiché i dati vengono pre-aggregati e trasformati al momento
dell’inserimento, le queryG risultano più veloci, riducendo il carico computazionale durante l’esecuzione
della queryG;

� Persistenza automatica: Le view accumulano continuamente i dati dai flussi KafkaG, assicurando
che ogni nuovo messaggio sia immediatamente reso disponibile in ClickhouseG per ulteriori analisi;

� Aggiornamento in tempo reale: Non appena nuovi messaggi arrivano in KafkaG, la materialized
view li elabora automaticamente e li inserisce nella tabella di destinazione, mantenendo sempre
aggiornato lo stato dei dati;

59

SPECIFICA TECNICA v1.0.0

� Integrazione trasparente con KafkaG: Utilizzando l’engine KafkaG per definire le tabelle sor-
gente, come detto nella sezione di KafkaG ClickhouseG può “iscriversi” automaticamente ai topicG
KafkaG. In questo modo, l’engine si occuperà di gestire i dati e dopo dato che saranno disponibili
anche nella materialized view si potranno trasformare e trattare coem se fosse una tabella normale.

Ecco alcuni esempi:

1 CREATE MATERIALIZED VIEW nearyou.mv_positions TO nearyou.positions

2 AS

3 SELECT

4 user_uuid,

5 latitude,

6 longitude,

7 received_at

8 FROM nearyou.positionsKafka;

1 CREATE MATERIALIZED VIEW nearyou.mv_messageTable TO nearyou.messageTable

2 AS

3 SELECT

4 user_uuid,

5 activity_uuid,

6 message_uuid,

7 message,

8 activityLatitude,

9 activityLongitude,

10 creationTime,

11 userLatitude,

12 userLongitude

13 FROM nearyou.messageTableKafka;

In pratica, una volta che una materialized view è definita, ClickhouseG continua a monitorare la tabella
KafkaG di origine e, ogni volta che arrivano nuovi dati, li elabora e li scrive nella tabella target (ad es.
positions o messageTable). Questo meccanismo permette di sfruttare il flusso dati di KafkaG senza
perdere i vantaggi di una storage engine tradizionale, garantendo l’accesso in tempo reale a dati puliti e
pre-aggregati.

4.5.5.2.5 Funzionalità geospaziali
In questo progettoG sono state usate le funzioni geospaziali offerte da ClickhouseG per calcolare distanze
e rilevare la prossimità tra punti geografici. geoDistance: Calcola la distanza in metri tra due punti
geografici
Ad esempio un implementazione della funzione geoDistance si trova nella queryG dei messaggi, dove
questa funzione è stata usata per calcolare la distanza tra la posizione dell’utente e la posizione originale
del messaggio. Ecco il frammento della queryG in cui viene usata questa funzione:

1 WHERE

2 geoDistance(m.activityLongitude, m.activityLatitude, p.longitude, p.latitude) < 300

4.5.6 Grafana

GrafanaG è una piattaforma di visualizzazione e analisi dati utilizzata in questo progettoG per rappre-
sentare graficamente le informazioni raccolte dal sistemaG e consentire il monitoraggio in tempo reale
delle attività.

4.5.6.1 Utenti
Innanzitutto per fare l’accesso è necessario un account GrafanaG. Dato che lo scopo di questo progettoG
è quello di creare una dashboardG da amministratore la scelta è stata quella di usare l’account admin
per l’accesso. Le credenziali per questo utente sono:

60

SPECIFICA TECNICA v1.0.0

- Username: admin;

- Password: admin.

Questo utente ha accesso completo a entrambe le dashboardG del progettoG.

4.5.6.2 Dashboards
La visualizzazione in questo progettoG è stata separata in due dashboardG differenti:

. DashboardG generale: Si occupa di una visuale complessiva del sistemaG, mostrando le ultime
posizioni e gli ultimi messaggi di ogni singolo utente. Inoltre si vedono anche tutte le attività
commerciali disposte per la mappa; In questa mappa è anche presente una leaderboard che mostra
le attività più popolari in base al numero di messaggi pubblicitari generati;

. DashboardG specifica: Questa dashboardG è dedicata a un singolo utente e mostra ogni singola
posizione che compone il suo percorsoG, ogni singolo messaggio pubblicitario generato per questo
utente e tutte le attività presenti sulla mappa. È inoltre presente una tabella che mostra tutti i
dati anagrafici dell’utente.

4.5.6.3 Dashboard generale
La dashboardG generale è quindi divisa in due widget:

- Mappa geospaziale: Un pannelloG interattivo che visualizza una mappa OpenStreetMap su cui
vengono mostrate le seguenti informazioni:

. MarkerG verde scuro a cerchio che rappresentano solo l’ultima posizione per ogni singolo utente;

. MarkerG arancioni quadrati che mostrano l’ultimo messaggio pubblicitario generato per ogni
singolo utente;

. MarkerG rossi a cerchio che indicano le attività commerciali nel territorio.

- Tabella delle attività più popolari: Una classifica in tempo reale delle attività commerciali
ordinate per numero di messaggi pubblicitari generati, con le seguenti informazioni:

. Nome dell’attività;

. Categoria o tipologia dell’attività;

. Indirizzo dell’attività;

. Descrizione dell’attività;

. Conteggio totale dei messaggi generati.

Facendo hover o premendo sulla posizione di un utente comparirà il popup con le informazioni dell’utente.
Fra queste informazioni sarà presente anche un link che porta l’amministratore nella dashboardG specifica
che fa riferimento all’utente su cui ha premuto in origine.

4.5.6.3.1 Dashboard specifica
La dashboardG specifica è dedicata all’analisi dettagliata di un singolo utente, identificato tramite una
variabile della dashboardG user id. Questa dashboardG permette di:

- Evidenziare con markerG specifici:

. Visualizzare l’intero percorsoG storico dell’utente sulla mappa, con punti che rappresentano le
posizioni registrate nel tempo (viola);

. Distinguere la prima e l’ultima posizione registrata dalle altre posizioni (verde scuro e chiaro);

. Le attività commerciali vicine al percorsoG (rosso);

. I messaggi pubblicitari generati lungo il percorsoG (arancione).

- Analizzare i dati temporali delle posizioni e dei messaggi correlati;

- Tabella dei dati anagrafici dell’utente: Una tabella che mostra le seguenti informazioni:

61

SPECIFICA TECNICA v1.0.0

. Nome dell’utente;

. Cognome dell’utente;

. Indirizzo email;

. Genere dell’utente;

. Data di nascità;

. Stato Civile;

. Interessi dell’utente.

4.5.6.4 Querying Clickhouse
L’integrazione tra GrafanaG e ClickhouseG è realizzata tramite queryG SQLG ottimizzate per le per-
formance. Di seguito sono riportate le principali queryG utilizzate nelle dashboardG, che consentono di
estrarre e visualizzare i dati in tempo reale.

- Query per la dashboardG generale: La dashboardG generale contiene queryG per visualizzare
dati aggregati che consentono di monitorare l’intera piattaforma;

- Posizioni attuali degli utenti: Questa queryG recupera l’ultima posizione nota per ciascun
utente registrato nel sistemaG. Utilizza una subquery con ROW NUMBER() per selezionare
solo la posizione più recente per ciascun sensore.

1 SELECT

2 user_uuid,

3 latitude,

4 longitude,

5 received_at

6 FROM (

7 SELECT

8 user_uuid,

9 latitude,

10 longitude,

11 received_at,

12 ROW_NUMBER() OVER (PARTITION BY user_uuid ORDER BY received_at DESC

) AS row_num

13 FROM "nearyou"."positions"

14)

15 WHERE row_num = 1;

- Messaggi pubblicitari recenti: Questa queryG complessa recupera i messaggi pubblicitari
più recenti per ciascun utente, includendo informazioni contestuali come il nome dell’utente
e dell’attività. Filtra i messaggi in base alla prossimità utilizzando la funzione geospaziale
geoDistance.

1 SELECT

2 m.userLatitude AS latitude,

3 m.userLongitude AS longitude,

4 m.creationTime AS creazione_time,

5 u.name AS userName,

6 u.surname AS userSurname,

7 a.name AS activityName,

8 m.message AS message

9 FROM (

10 SELECT

11 user_uuid,

12 message_uuid,

13 message,

14 activity_uuid,

15 activityLatitude,

16 activityLongitude,

17 creationTime,

62

SPECIFICA TECNICA v1.0.0

18 userLatitude,

19 userLongitude,

20 ROW_NUMBER() OVER (PARTITION BY user_uuid ORDER BY toDateTime(

creationTime) DESC) AS rn

21 FROM nearyou.messageTable

22) AS m

23 INNER JOIN nearyou.user u ON m.user_uuid = u.user_uuid

24 INNER JOIN nearyou.activity a ON m.activity_uuid = a.activity_uuid

25 INNER JOIN (

26 SELECT

27 user_uuid,

28 latitude,

29 longitude,

30 received_at,

31 ROW_NUMBER() OVER (PARTITION BY user_uuid ORDER BY received_at DESC

) AS rn

32 FROM nearyou.positions

33) AS p ON u.assigned_sensor_uuid = p.user_uuid AND p.rn = 1

34 WHERE

35 m.rn = 1

36 AND geoDistance(m.activityLongitude, m.activityLatitude, p.

longitude, p.latitude) < 300

37 ORDER BY m.creationTime DESC;

- Lista delle attività: Questa queryG recupera l’elenco completo delle attività (punti di inter-
esse) dal databaseG.

1 SELECT * FROM "nearyou"."activity" LIMIT 1000

- Attività più popolari: Questa queryG genera una classifica delle attività commerciali in
base al numero di messaggi pubblicitari generati per ciascuna di esse.

1 SELECT

2 a.name AS nome_attivita,

3 a.address AS indirizzo,

4 a.type AS tipologia,

5 a.description as descrizione,

6 COUNT(m.message_uuid) AS numero_messaggi

7 FROM nearyou.activity a

8 INNER JOIN nearyou.messageTable m ON a.activity_uuid = m.activity_uuid

9 GROUP BY a.activity_uuid, a.name, a.type, a.address, a.description

10 HAVING COUNT(m.message_uuid) > 0

11 ORDER BY numero_messaggi DESC

- Query per la dashboardG specifica utente: La dashboardG specifica per utente utilizza queryG
che filtrano i dati in base all’utente selezionato, identificato tramite la variabile $user id;

- Storico posizioni dell’utente: Questa queryG recupera l’intero storico delle posizioni per
un utente specifico, consentendo di visualizzare il suo percorsoG completo sulla mappa.

1 SELECT * FROM nearyou.positions

2 WHERE user_uuid = toUUID(’${user_id}’)

3 LIMIT 1000

- Prima e ultima posizione dell’utente: Questa queryG utilizza UNION ALL per combinare
due subquery che identificano la prima e l’ultima posizione registrata per l’utente, consentendo
di evidenziarle sulla mappa.

63

SPECIFICA TECNICA v1.0.0

1 (

2 SELECT *

3 FROM nearyou.positions

4 WHERE user_uuid = toUUID(’${user_id}’)

5 ORDER BY received_at ASC

6 LIMIT 1

7)

8 UNION ALL

9 (

10 SELECT *

11 FROM nearyou.positions

12 WHERE user_uuid = toUUID(’${user_id}’)

13 ORDER BY received_at DESC

14 LIMIT 1

15);

- Messaggi per l’utente specifico: Questa queryG recupera i messaggi pubblicitari generati
per un utente specifico, includendo informazioni contestuali come le coordinate dell’utente e
dell’attività al momento della generazione.

1 SELECT

2 m.userLatitude,

3 m.userLongitude,

4 m.creationTime,

5 u.name,

6 u.surname,

7 a.name,

8 m.message

9 FROM nearyou.messageTable m

10 INNER JOIN nearyou.user u ON m.user_uuid = u.user_uuid

11 INNER JOIN nearyou.activity a ON m.activity_uuid = a.activity_uuid

12 WHERE u.assigned_sensor_uuid = toUUID(’${user_id}’)

13 LIMIT 1000;

- Dati anagrafici dell’utente: Questa queryG recupera i dati anagrafici dell’utente e i suoi
interessi, utilizzando la funzione ARRAY AGG per aggregare gli interessi multipli in un array.

1 SELECT

2 u.name,

3 u.surname,

4 u.email,

5 u.gender,

6 u.birthdate,

7 u.civil_status,

8 ARRAY_AGG(ui.interest) AS interests_json

9 FROM

10 nearyou.user u

11 JOIN

12 nearyou.user_interest ui ON u.user_uuid = ui.user_uuid

13 WHERE

14 u.assigned_sensor_uuid = toUUID(’${user_id}’)

15 GROUP BY

16 u.name, u.surname, u.email, u.gender, u.birthdate, u.civil_status,

u.user_uuid;

Queste queryG rappresentano un insieme completo di interrogazioni utilizzate per alimentare le dashboardG
GrafanaG e consentire la visualizzazione di informazioni in tempo reale sulla posizione degli utenti, le
attività commerciali e i messaggi pubblicitari generati.

4.5.6.5 Variabili dashboard
In questo progettoG è stata usata una variabile dashboardG per filtrare i dati in base all’utente selezionato.

64

SPECIFICA TECNICA v1.0.0

Questa variabile è definita come user id e viene utilizzata per personalizzare le queryG SQLG in modo
da visualizzare solo i dati pertinenti a un singolo utente. Ad esempio, la variabile viene utilizzata nella
queryG per le posizioni correnti dell’utente:

1 SELECT *

2 FROM nearyou.positions

3 WHERE user_uuid = toUUID(’${user_id}’)

4.5.6.6 Trasformazioni e array interessi
Per la tabella dell’utente nella tabella della dashboardG specifica per far vedere gli interessi dell’utente
è stata usata la funzione ARRAY AGG per aggregare gli interessi dell’utente in un array JSONG. Questo
approccio consente di visualizzare gli interessi in un formato strutturato e facilmente leggibile ma compar-
ivano tutti in una singola cella. Quindi sono state usate delle trasformazioni di GrafanaG per visualizzare
un interesse per cella e rinominare la colonna in ”Interesse0”, ”Interesse1”, ecc.

- Estrazione campi: Utilizzando la trasformazione ”extractFields” per estrarre i valori dall’array
JSONG:

1 {

2 "id": "extractFields",

3 "options": {

4 "delimiter": ",",

5 "format": "auto",

6 "jsonPaths": [

7 {

8 "alias": "interest",

9 "path": ""

10 }

11],

12 "keepTime": false,

13 "replace": false,

14 "source": "interests_json"

15 }

16 }

- Organizzazione: Per nascondere il campo originale dell’array e mantenere solo i campi estratti:

1 {

2 "id": "organize",

3 "options": {

4 "excludeByName": {

5 "interests_json": true

6 },

7 "includeByName": {},

8 "indexByName": {},

9 "renameByName": {}

10 }

11 }

- Ridenominazione colonne: Usando la trasformazione ”renameByRegex” per applicare un pat-
tern di ridenominazione:

1 {

2 "id": "renameByRegex",

3 "options": {

4 "regex": "^(\\d+)$",

5 "renamePattern": "interesse $1"

65

SPECIFICA TECNICA v1.0.0

6 }

7 }

4.5.6.7 Connettore Clickhouse
GrafanaG si integra con ClickhouseG attraverso un connettore nativo specifico, configurato come data-
source all’interno della piattaforma:

1 {

2 "name": "ClickHouse",

3 "type": "grafana-clickhouse-datasource",

4 "uid": "ee5wustcp8zr4b",

5 "jsonData": {

6 "defaultDatabase": "nearyou",

7 "port": 9000,

8 "host": "clickhouse",

9 "username": "default",

10 "tlsSkipVerify": false

11 },

12 "secureJsonData": {

13 "password": "pass"

14 }

15 }

Il connettore nativo offre vantaggi significativi rispetto alle alternative generiche:

- Porta con sé tutte le funzionalità di ClickhouseG:

. Supporto per queryG SQLG avanzate;

. Funzioni geospaziali integrate;

. Ottimizzazione automatica delle performance.

- Configurazione semplice e veloce:

. Configurazione del datasource in pochi passaggi;

. Nessuna necessità di scrivere codice personalizzato per l’integrazione;

. Possibilità di configurare il provisioning automatico.

La visualizzazione in tempo reale è garantita attraverso un intervallo di aggiornamento automatico con-
figurato a 10 secondi:

1 {

2 "refresh": "10s"

3 }

Questa impostazione assicura che i dati visualizzati nelle dashboardG siano costantemente aggiornati,
permettendo di monitorare in tempo reale:

- Spostamenti degli utenti;

- Generazione di nuovi messaggi pubblicitari;

- Statistiche di generazione di messaggi per le attività più popolari.

4.5.6.8 Provisioning automatico
Il provisioning automatico di GrafanaG è implementato attraverso file di configurazione YAML che ven-
gono caricati all’avvio del containerG, garantendo la disponibilità immediata di datasource e dashboardG
preconfiguraate.

- Provisioning del datasource ClickhouseG:

66

SPECIFICA TECNICA v1.0.0

1 apiVersion: 1

2 datasources:

3 - name: Clickhouse

4 type: grafana-clickhouse-datasource

5 uid: "ee5wustcp8zr4b"

6 jsonData:

7 defaultDatabase: nearyou

8 port: 9000

9 host: clickhouse

10 username: default

11 tlsSkipVerify: false

12 secureJsonData:

13 password: pass

- Provisioning delle dashboardG:

1 apiVersion: 1

2 providers:

3 - name: "Dashboard provider"

4 orgId: 1

5 type: file

6 disableDeletion: false

7 updateIntervalSeconds: 10

8 options:

9 path: /var/lib/grafana/dashboards

10 foldersFromFilesStructure: true

Le dashboardG sono definite in file JSONG che vengono copiati nella directory specificata nel provider
durante la buildG dell’immagine DockerG, garantendo che siano immediatamente disponibili all’avvio
del containerG GrafanaG. Questa configurazione automatizzata elimina la necessità di setup manuale e
assicura la coerenza dell’ambiente di visualizzazione in tutti i deployment del sistemaG.

4.5.7 Best practices architetturali

4.5.7.1 PEP8 - Stile di codifica Python
Il progettoG aderisce alle linee guida PEP8, lo standard di stile di codifica PythonG, garantendo coerenza
e leggibilità. Questo include:

- Indentazione di 4 spazi (non tab);

- Lunghezza massima delle linee di 79 caratteri;

- Spaziatura coerente attorno agli operatori;

- Convenzioni di nomenclatura: snake case per variabili e funzioni, PascalCase per classi;

- Docstring per moduli, classi e funzioni.

Il rispetto di PEP8 è verificato attraverso l’uso di linting automatizzato, come evidenziato dal badge
PyLint nel README del progettoG (punteggio 7.7/10.0).

4.5.7.2 Principi SOLID
L’architettura del software è progettata seguendo i principi SOLID:

- Single Responsibility Principle: L’architettura di questo progettoG rivela una comprensione
profonda del Single Responsibility Principle (SRP), uno dei capisaldi dei principi SOLID. Ciò che
colpisce immediatamente è il modo in cui l’intero sistemaG sia stato concepito come un ecosistema
di componenti indipendenti ma interconnessi, ognuno con una responsabilità chiara e ben definita;

All’interno di ciascun modulo, l’aderenza al SRP continua a manifestarsi nella progettazione dei
repositoryG. Ogni repositoryG è dedicato ad un singolo tipo di entità. Il ClickhouseUserRepository
si concentra esclusivamente sui dati degli utenti, mentre l’ClickhouseActivityRepository gestisce

67

SPECIFICA TECNICA v1.0.0

solo le attività. Questa specializzazione permette di incapsulare tutta la logica relativa ad un’entità
in un unico contenitore, rendendo il codice più prevedibile e facilitando i futuri interventi di
manutenzione.

Particolarmente interessante è l’implementazione del pattern Strategy nel SimulationService.
L’interfaccia IPositionSimulationStrategy definisce un contratto che viene PoIG implementato da
classi specifiche come BycicleSimulationStrategy. Questo approccio consente di modificare gli
algoritmi di simulazione senza dover intervenire sul resto del codice, incarnando perfettamente il
principio di responsabilità singola.

I servizi specializzati come GroqLLMService e UserSensorService testimoniano ulteriormente
l’impegno verso il SRP. Il primo si occupa esclusivamente dell’interazione con i modelli linguis-
tici, mentre il secondo gestisce solo le relazioni tra sensori e utenti. Questa specializzazione rende
il codice non solo più leggibile, ma anche più resiliente ai cambiamenti.

Nei processori FlinkG osserviamo lo stesso principio applicato alle operazioni di streaming. Ogni
processore ha un compito specifico: trasformare posizioni in messaggi, validare messaggi o filtrare
quelli già visualizzati. Questa ”catena di responsabilità” permette di ragionare su ciascun passaggio
indipendentemente, facilitando debugging e testing;

- Open/Closed Principle: Al cuore dell’architettura troviamo un sistemaG di interfacce che sta-
bilisce contratti chiari tra i diversi componenti. La presenza di interfacce come IUserRepository,
IMessageRepository e IActivityRepository consente di definire comportamenti astrati che pos-
sono essere implementati in molteplici modi. Questa scelta progettuale permette di introdurre
nuove implementazioni (come potrebbe essere un PostgresUserRepository accanto all’esistente
ClickhouseUserRepository) senza alterare il codice client che interagisce con queste interfacce.

Particolarmente significativa è l’implementazione del pattern Strategy nel modulo di simulazione.
L’interfaccia IPositionSimulationStrategy definisce un contratto generico per gli algoritmi di
simulazione delle posizioni, mentre implementazioni concrete come BycicleSimulationStrategy

ne forniscono realizzazioni specifiche. Questo design consente di introdurre nuove strategie di sim-
ulazione, magari per automobili, pedoni, senza modificare il codice esistente. Il sistemaG può
accogliere nuove funzionalità semplicemente estendendo il repertorio di strategie disponibili.

Il paradigma dell’elaborazione streaming adottato con Apache FlinkG manifesta in modo efficace il
principio Open/Closed. La catena di processori come PositionToMessageProcessor,
FilterMessageValidator e FilterMessageAlreadyDisplayed è costruita in modo tale che nuovi
comportamenti di elaborazione possano essere introdotti aggiungendo nuovi processori, senza alter-
are quelli esistenti. Ogni processore ha una responsabilità ben definita e la pipeline di elaborazione
può essere estesa aggiungendo nuovi anelli alla catena.

La struttura dei DTO (Data Transfer Objects) come UserDTO, ActivityDTO e MessageDTO è
progettata per essere facilmente estensibile. Nuovi attributi o proprietà possono essere aggiunti a
queste classi senza influenzare il codice che utilizza solo le proprietà esistenti.

I testG unitari, infine, rivelano come l’architettura faciliti l’estensibilità: l’uso di mock e stub per
le dipendenze dimostra che i componenti sono progettati per accettare implementazioni alternative
delle loro dipendenze, un prerequisito essenziale per un sistemaG che rispetta il principio Open/-
Closed;

- Liskov Substitution Principle: Le classi derivate possono sostituire le classi base senza alterare
il comportamento, consentendo l’uso intercambiabile delle diverse strategie di simulazione.

Questo principio trova una chiara applicazione nel pattern Strategy adottato. La relazione tra
IPositionSimulationStrategy e BycicleSimulationStrategy ne è un esempio esemplare:
l’interfaccia definisce un contratto preciso per la simulazione delle posizioni, mentre la strategia per
biciclette lo implementa fedelmente. Questo design garantisce che nuove strategie, come la simu-
lazione di automobili, pedoni o altri mezzi di trasporto, possano essere integrate senza modificare il
codice client. Di conseguenza, il sistemaG rimane flessibile ed estensibile, assicurando che il codice
che utilizza una strategia di simulazione continui a funzionare correttamente indipendentemente
dall’implementazione specifica;

- Interface Segregation Principle: Le interfacce del sistemaG sono progettate per essere speci-
fiche e mirate, garantendo una chiara separazione delle responsabilità. Un esempio evidente è dato
dai processori del flusso FlinkG, come PositionToMessageProcessor, FilterMessageValidator

68

SPECIFICA TECNICA v1.0.0

e FilterMessageAlreadyDisplayed. Ciascuno di essi implementa un’interfaccia focalizzata es-
clusivamente sulla propria funzione all’interno della pipeline di elaborazione. Questo approccio
favorisce la modularità, consentendo a ogni componente di svolgere il proprio compito senza essere
appesantito da metodi superflui o non pertinenti alla sua responsabilità;

- Dependency Inversion Principle: I componenti del sistemaG seguono il principio DIP, affidan-
dosi ad astrazioni anziché a implementazioni concrete. Un esempio chiaro di questo approccio è
il pattern Strategy adottato nel SimulationService. I moduli responsabili dell’orchestrazione della
simulazione dipendono dall’interfaccia IPositionSimulationStrategy anziché da specifiche im-
plementazioni come BycicleSimulationStrategy. Questa separazione consente di sostituire facil-
mente le strategie di simulazione, mantenendo il sistemaG flessibile ed estensibile senza necessità di
modificare il codice esistente.

Particolarmente sofisticata è l’applicazione del DIP nei servizi di comunicazione con sistemi esterni.
Il GroqLLMService, ad esempio, non espone i dettagli dell’implementazione specifica del provider
LLMG ai suoi client. Invece, offre un’interfaccia astratta che incapsula l’interazione con il modello
linguistico. Questo design consente di sostituire il provider sottostante – magari passando da GroqG
ad altri fornitori – senza ripercussioni sui componenti che utilizzano questo servizio.

4.5.7.3 Dependency Injection

La Dependency Injection (DI) è un pattern di progettazione software che implementa il principio di
Inversione del Controllo (IoC). Questo pattern permette di separare la creazione di un oggetto dal suo
utilizzo, consentendo di ”iniettare” le dipendenze nei componenti anziché crearle all’interno di essi.
Nel progettoG NearYou, questo pattern è stato implementato per ottenere un’architettura software mod-
ulare, testabile e manutenibile. La DI ha permesso di gestire efficacemente le complesse dipendenze tra i
vari componenti del sistemaG, facilitando l’integrazione fra i moduli di simulazione, elaborazione eventi
e storage.

4.5.7.3.1 Constructor Injection nel Progetto

La tecnica di Constructor Injection è stata scelta come approccio principale per implementare la DI in
questo progettoG. Con questa tecnica, le dipendenze vengono fornite attraverso i parametri del costruttore
della classe.
I vantaggi della Constructor Injection sono:

� Dipendenze obbligatorie: Il costruttore richiede esplicitamente tutte le dipendenze necessarie;

� Immutabilità: Le dipendenze possono essere memorizzate in campi privati finali;

� Testabilità: Facilita la sostituzione delle dipendenze reali con mock durante i testG;

� Visibilità: Rende esplicite le dipendenze di una classe.

4.6 Implementazione nel FlinkProcessor

Un esempio significativo di Constructor Injection nel progettoG è la classe FlinkJobManager, responsabile
della configurazione e gestione del flusso di elaborazione dei dati:

Listing 1: Esempio di Constructor Injection in FlinkJobManager

1 class FlinkJobManager:

2 def __init__(self,

3 streaming_env_istance : StreamExecutionEnvironment,

4 map_function_implementation : MapFunction,

5 filter_validator_implementation : FilterFunction,

6 filter_function_implementation : FilterFunction,

7 position_receiver_istance: IPositionReceiver,

8 message_sender_istance: IMessageWriter

9):

10 self.__streaming_env = streaming_env_istance

69

SPECIFICA TECNICA v1.0.0

11 self.__populated_datastream = self.__streaming_env.from_source(

position_receiver_istance.get_position_receiver(),

12 WatermarkStrategy.

for_monotonous_timestamps()

,

13 "Positions Source")

14 self.__keyed_stream = self.__populated_datastream.key_by(lambda x: x[0], key_type=

Types.STRING())

15 self.__validated_stream = self.__keyed_stream.filter(filter_validator_implementation

)

16 self.__mapped_stream = self.__validated_stream.map(map_function_implementation,

17 output_type=KafkaWriterConfiguration().

row_type_info_message)

18 self.__filtered_stream = self.__mapped_stream.filter(filter_function_implementation)

19 self.__filtered_stream.sink_to(message_sender_istance.get_message_writer())

Questo esempio mostra come il costruttore riceva tutte le dipendenze necessarie come parametri, ognuna
tipizzata con la relativa interfaccia. Questo approccio garantisce che:

1. Tutte le dipendenze siano fornite all’inizializzazione dell’oggetto;

2. Le concrete implementazioni possano essere facilmente sostituite;

3. La classe non debba conoscere i dettagli di implementazione delle sue dipendenze.

4.6.0.0.1 Implementazione nel SimulationModule

Nel modulo di simulazione, il pattern di Constructor Injection è utilizzato ampiamente, come nel caso di
SensorFactory:

Listing 2: Esempio di Constructor Injection in SensorFactory

1 class SensorFactory:

2 def __init__(self, sensor_repository: ISensorRepository, user_repository:

IUserRepository):

3 self.__sensor_repository = sensor_repository

4 self.__user_repository = user_repository

5

6 def create_gps_sensor(self, position_sender: PositionSender,

7 simulation_strategy: IPositionSimulationStrategy) -> GpsSensor:

8 # Implementazione che utilizza le dipendenze iniettate

4.6.0.0.2 Integrazione con il Sistema di Testing

La Dependency Injection tramite costruttore ha semplificato notevolmente l’implementazione dei testG
unitari. Utilizzando librerie come unittest.mock, è possibile sostituire facilmente le dipendenze reali
con mock:

Listing 3: Test di un componente con Constructor Injection

1 def setUp(self):

2 self.mock_sensor_repository = Mock(spec=ISensorRepository)

3 self.mock_user_repository = Mock(spec=IUserRepository)

4 self.mock_position_sender = Mock(spec=PositionSender)

5 self.mock_simulation_strategy = Mock(spec=IPositionSimulationStrategy)

6 self.mock_user_sensor_service = Mock(spec=UserSensorService)

7

8 self.patcher = patch(’Models.SensorFactory.UserSensorService’,

9 return_value=self.mock_user_sensor_service)

10 self.patcher.start()

11

70

SPECIFICA TECNICA v1.0.0

12 self.sensor_factory = SensorFactory(self.mock_sensor_repository, self.

mock_user_repository)

Questo approccio ha contribuito a raggiungere una copertura di testG vicina al 100%, come evidenziato
dai badge del progettoG, rendendo il codice più robusto e affidabile.

4.6.0.0.3 Implementazione nella Pratica

La composizione delle dipendenze nel progettoG avviene tipicamente al punto di ingresso dell’applicazione,
come mostrato in main.py:

Listing 4: Composizione delle dipendenze in main.py

1 json_adapter: PositionJsonAdapter = PositionJsonAdapter()

2 kafka_confluent_adapter: PositionSender = KafkaConfluentAdapter(

3 KafkaConfigParameters(),

4 json_adapter,

5 Producer({’bootstrap.servers’: KafkaConfigParameters().bootstrap_servers})

6)

7

8 graph_wrapper: GraphWrapper = GraphWrapper()

9 bicycle_simulation_strategy: IPositionSimulationStrategy = BycicleSimulationStrategy(

graph_wrapper)

10

11 # Database connection

12 db_connection = DatabaseConnection(DatabaseConfigParameters())

13 sensor_repository: ISensorRepository = SensorRepository(db_connection)

14 user_repository: IUserRepository = UserRepository(db_connection)

15

16 # Factory

17 sensor_factory: SensorFactory = SensorFactory(sensor_repository, user_repository)

71

SPECIFICA TECNICA v1.0.0

5 Architettura di deployment

Da capitolatoG era stato definito l’uso di un’architettura containerizzata e anche valutando alcune alter-
native risultava comunque la scelta più ragionevole. Al fine di implementare ed eseguire l’intero stack
tecnologico ed i componenti del modello architetturale del sistemaG seguendo questa architettura, è stato
configurato un ambiente DockerG che simula la suddivisione e la distribuzione dei servizi. Informazioni
aggiuntive sulle immagini utilizzate e sulle configurazioni dell’ambiente sono disponibili nel file docker-
compose.yml presente nel repositoryG del progettoG oltre che nella sezione 2.3.

5.1 Panoramica dell’infrastruttura

5.1.1 Ambiente Docker dei Componenti Principali

5.1.1.1 Zookeeper Service

� Descrizione: Implementa un servizio di coordinamento distribuito essenziale per l’infrastruttura
KafkaG. Fornisce sincronizzazione, centralizzazione della configurazione, gestione dei nomi, e leader
election per il sistemaG distribuito;

� Configurazioni:

– hostname: zookeeper - Nome host assegnato al containerG all’interno della rete DockerG,
utilizzato dagli altri servizi per riferirsi a Zookeeper;

– container name: zookeeper - Nome esplicito assegnato al containerG per facilitarne
l’identificazione e la gestione;

– image: confluentinc/cp-zookeeper:7.6.0 - Immagine DockerG ufficiale di Confluent Inc.
per Zookeeper, versione 7.6.0, garantendo compatibilità con il brokerG KafkaG utilizzato;

– environment - Variabili d’ambiente che configurano il comportamento di Zookeeper:

* ZOOKEEPER CLIENT PORT: 2181 - Porta sulla quale Zookeeper accetta connessioni dai
client;

* ZOOKEEPER TICK TIME: 2000 - Unità di tempo base in millisecondi utilizzata per il timeout
e la sincronizzazione.

– ports: - 2181:2181 - Mappatura della porta, espone la porta 2181 del containerG alla porta
2181 dell’host per consentire connessioni esterne.

� Controlli e Disponibilità:

– healthcheck - Verifica automatica dello stato di salute del servizio:

* test: nc -z localhost 2181 || exit -1 - Comando che verifica se la porta 2181 è
in ascolto, segnalando un errore in caso contrario;

* interval: 10s - Frequenza di esecuzione del controllo (ogni 10 secondi);

* timeout: 5s - Tempo massimo di attesa per l’esecuzione del controllo;

* retries: 3 - Numero di tentativi prima di considerare il controllo fallito.

– profiles: ["test","develop","prod"] - Attivazione del servizio in tutti gli ambienti di
esecuzione (test, sviluppo e produzione), indicando la sua importanza fondamentale per l’intero
sistemaG.

5.1.1.2 Kafka Service

� Descrizione: Implementa un brokerG di messaggistica distribuito che gestisce lo scambio di dati
tra i componenti dell’applicazione. Fornisce un sistemaG publish-subscribe scalabile che consente
la comunicazione asincrona tra il simulatore di posizione e il processore FlinkG;

� Configurazioni:

– image: confluentinc/cp-kafka:7.6.0 - Immagine DockerG ufficiale di Confluent Inc. per
KafkaG, versione 7.6.0;

– hostname: kafkaG - Nome host assegnato al containerG all’interno della rete DockerG;

72

SPECIFICA TECNICA v1.0.0

– container name: kafkaG - Nome esplicito assegnato al containerG per facilitarne l’identificazione;

– depends on - Dipendenze del servizio:

* zookeeper: condition: service healthy - Attende che Zookeeper sia completamente
funzionante prima dell’avvio;

* clickhouse: condition: service started - Attende l’avvio di ClickhouseG.

– ports: - 29092:29092 - Espone la porta 29092 per connessioni da applicazioni esterne alla
rete DockerG;

– environment - Variabili d’ambiente che configurano il comportamento di KafkaG:

* KAFKA BROKER ID: 1 - Identificatore univoco del brokerG KafkaG;

* KAFKA ZOOKEEPER CONNECT: zookeeper:2181 - Indirizzo di connessione a Zookeeper;

* KAFKA ADVERTISED LISTENERS - Configurazione degli endpoint pubblicizzati per le con-
nessioni interne ed esterne;

* KAFKA LISTENER SECURITY PROTOCOL MAP - Mappa dei protocolli di sicurezza per i diversi
listener;

* KAFKA INTER BROKER LISTENER NAME: PLAINTEXT - Nome del listener utilizzato per la
comunicazione tra brokerG;

* KAFKA OFFSETS TOPIC REPLICATION FACTOR: 1 - Fattore di replica per il topicG degli
offset, impostato a 1 per un ambiente di sviluppo single-node;

* KAFKA AUTO CREATE TOPICS ENABLE: "true" - Abilita la creazione automatica dei topicG
quando vengono referenziati.

� Inizializzazione e Script:

– command - Script di inizializzazione eseguito all’avvio del containerG:

* Rimuove eventuali nodi KafkaG esistenti in Zookeeper per evitare conflitti di ID;

* Avvia il processoG KafkaG in background;

* Crea esplicitamente due topicG cruciali per l’applicazione:

· MessageElaborated - TopicG che conterrà i messaggi elaborati dal processore FlinkG;

· SimulatorPosition - TopicG che conterrà i dati di posizione generati dal simulatore.

* Configura entrambi i topicG con una partizione e un fattore di replica pari a 1 (adatto per
ambienti di sviluppo).

� Controlli e Disponibilità:

– healthcheck - Verifica automatica dello stato di salute del servizio:

* test - Verifica che entrambi i topicG ”MessageElaborated” e ”SimulatorPosition” siano
stati creati correttamente;

* interval: 10s - Frequenza di esecuzione del controllo;

* timeout: 5s - Tempo massimo di attesa per l’esecuzione del controllo;

* retries: 5 - Numero di tentativi prima di considerare il controllo fallito;

* start period: 10s - Periodo iniziale di grazia prima di iniziare i controlli.

– profiles: ["test","develop","prod"] - Attivazione del servizio in tutti gli ambienti di
esecuzione, essendo un componente fondamentale dell’architettura.

5.1.1.3 Kafdrop Service

� Descrizione: Implementa un’interfaccia web user-friendly per il monitoraggio e la gestione di
Apache KafkaG. Fornisce una visualizzazione grafica del cluster KafkaG, dei topicG, dei consumer
group e dei messaggi, facilitando il debug e l’analisi del flusso di dati;

� Configurazioni:

– container name: kafdrop - Nome esplicito assegnato al containerG per facilitarne l’identificazione;

– image: obsidiandynamics/kafdrop - Immagine DockerG ufficiale di Kafdrop, un’interfaccia
web open-source per KafkaG;

73

SPECIFICA TECNICA v1.0.0

– restart: "no" - Politica di riavvio configurata per non riavviare automaticamente il containerG
in caso di errori, adatta per un’interfaccia di amministrazione non critica;

– ports: - "9080:9000" - Mappatura delle porte che espone l’interfaccia web Kafdrop sulla
porta 9080 dell’host, mentre internamente utilizza la porta 9000;

– environment - Variabili d’ambiente che configurano il comportamento di Kafdrop:

* KAFKA BROKERCONNECT: "kafka:9092" - Specifica l’indirizzo del brokerG KafkaG a cui
Kafdrop si connetterà, utilizzando il nome del servizio kafkaG all’interno della rete DockerG
e la porta 9092.

– depends on - Dipendenze del servizio:

* kafka: condition: service healthy - Attende che il servizio KafkaG sia completa-
mente funzionante (passando il healthcheck) prima di avviare Kafdrop.

� Funzionalità principali:

– Visualizzazione della struttura del cluster KafkaG, inclusi brokerG e topicG;

– Monitoraggio dei dettagli dei topicG, come partizioni, offset, e messaggi;

– Esplorazione e visualizzazione dei messaggi all’interno dei topicG;

– Visualizzazione dei gruppi di consumatori e dei loro offset;

– Interfaccia web intuitiva per amministratori e sviluppatori.

� Disponibilità:

– profiles: ["develop","prod"] - Il servizio è attivato solo negli ambienti di sviluppo e pro-
duzione, ma non in quello di testG, indicando che è destinato principalmente come strumento
di supporto per sviluppatori e operatori, piuttosto che come un componente fondamentale per
i testG automatizzati.

5.1.1.4 Grafana Service

� Descrizione: Implementa una piattaforma di visualizzazione e analisi dati open-source che per-
mette di creare dashboardG interattive per monitorare l’andamento dell’applicazione. Fornisce una
rappresentazione grafica dei dati archiviati in ClickhouseG, facilitando l’interpretazione e l’analisi
dei flussi di messaggi e delle posizioni degli utenti.

� Configurazioni:

– container name: grafana - Nome esplicito assegnato al containerG per facilitarne l’identificazione;

– image: grafana/grafana:latest - Immagine DockerG ufficiale di GrafanaG, utilizzando
l’ultima versione disponibile;

– ports: - "3000:3000" - Mappatura delle porte che espone l’interfaccia web GrafanaG sulla
porta 3000 dell’host;

– environment - Variabili d’ambiente che configurano il comportamento di GrafanaG:

* GF SECURITY ADMIN PASSWORD: admin - Imposta la password dell’utente amministratore
al valore ”admin”;

* GF INSTALL PLUGINS: "grafana-clickhouse-datasource" - Installa automaticamente
il plugin per la connessione a ClickhouseG come fonte dati.

– volumes - Configurazione dei volumi che collegano directory locali a percorsi all’interno del
containerG:

* ./Grafana/DashboardProv:/etc/grafana/provisioning/dashboards - Monta i file di
configurazione per il provisioning automatico delle dashboardG;

* ./Grafana/Dashboards:/var/lib/grafana/dashboards - Monta le definizioni JSONG

delle dashboardG personalizzate;

* ./Grafana/DatasourceProv:/etc/grafana/provisioning/datasources - Monta la con-
figurazione delle fonti dati, in particolare la connessione a ClickhouseG.

� Funzionalità principali:

74

SPECIFICA TECNICA v1.0.0

– Visualizzazione in tempo reale dei dati provenienti da ClickhouseG;

– DashboardG personalizzate per monitorare metriche chiave dell’applicazione;

– Pannelli di controllo per monitorare lo stato del sistemaG;

– Integrazione completa con ClickhouseG grazie al plugin dedicato;

– Provisioning automatico di dashboardG e fonti dati attraverso file di configurazione.

� Disponibilità:

– profiles: ["develop","prod"] - Il servizio è attivato solo negli ambienti di sviluppo e
produzione, ma non in quello di testG, essendo considerato uno strumento di supporto per
monitoraggio e analisi piuttosto che un componente essenziale per i testG automatizzati.

5.1.1.5 ClickHouse Service

� Descrizione: Implementa un databaseG colonnare ad alte prestazioni, ottimizzato per carichi di la-
voro analitici e queryG su grandi volumi di dati. Costituisce il layer di persistenza dell’applicazione,
memorizzando dati di utenti, sensori, attività commerciali e messaggi pubblicitari generati;

� Configurazioni:

– image: clickhouse/clickhouse-server:24.10 - Immagine DockerG ufficiale di ClickhouseG,
versione 24.10, che garantisce stabilità e prestazioni;

– hostname: clickhouse - Nome host assegnato al containerG all’interno della rete DockerG;

– container name: clickhouse - Nome esplicito assegnato al containerG per facilitarne
l’identificazione;

– ports - Mappatura delle porte tra host e containerG:

* "8123:8123" - Espone la porta HTTP di ClickhouseG per queryG REST e interfaccia
web;

* "9000:9000" - Espone la porta nativa di ClickhouseG per connessioni client dirette.

– environment - Variabili d’ambiente che configurano il comportamento di ClickhouseG:

* CLICKHOUSE DB: nearyou - Crea automaticamente un databaseG chiamato ”nearyou”
all’avvio;

* CLICKHOUSE USER: default - Configura l’utente predefinito del sistemaG;

* CLICKHOUSE PASSWORD: pass - Imposta la password per l’utente predefinito;

* CLICKHOUSE DEFAULT ACCESS MANAGEMENT: 0 - Disabilita la gestione degli accessi pre-
definita, utilizzando configurazioni personalizzate.

– volumes - Configurazione dei volumi:

* ./StorageData:/docker-entrypoint-initdb.d - Monta la directory locale ./Storage-
Data nella directory di inizializzazione di ClickhouseG, dove gli script SQLG vengono
eseguiti automaticamente al primo avvio per creare tabelle, indici e popolare dati iniziali.

� Funzionalità principali:

– Archiviazione efficiente di grandi volumi di dati in formato colonnare;

– Esecuzione di queryG analitiche ad alte prestazioni;

– Supporto per funzioni geospaziali utilizzate per calcolare distanze tra utenti e attività;

– Integrazione con GrafanaG per la visualizzazione dei dati;

– Inizializzazione automatica dello schema e dei dati all’avvio tramite script SQLG;

– Supporto per strutture dati complesse come array (utilizzati per gli interessi degli utenti).

� Disponibilità:

– profiles: ["test","develop","prod"] - Il servizio è attivato in tutti gli ambienti (test,
sviluppo e produzione), evidenziando il suo ruolo critico come componente infrastrutturale
dell’applicazione.

75

SPECIFICA TECNICA v1.0.0

5.1.1.6 Position Simulator Service

� Descrizione: Implementa un servizio di simulazione che genera realistici dati di posizione degli
utenti e li pubblica sul brokerG KafkaG. Utilizza strategie di simulazione basate su grafi stradali
per creare percorsi plausibili, simulando il movimento di utenti nel contesto urbano;

� Configurazioni:

– container name: positions - Nome esplicito assegnato al containerG per facilitarne
l’identificazione;

– build: ./SimulationModule - Specificazione della directory che contiene il Dockerfile e il
codice sorgente necessario per costruire l’immagine personalizzata;

– depends on - Dipendenze del servizio:

* kafka: condition: service healthy - Attende che il servizio KafkaG sia completa-
mente funzionante (passando il healthcheck) prima di avviare il simulatore.

– mem limit: 4G - Comentato, ma pronto per limitare la memoria utilizzata dal containerG a
4GB, se necessario.

� Dockerfile specifico:

– FROM python:3.8 - Utilizza l’immagine base PythonG 3.8 ufficiale;

– Prerequisiti - Installa pacchetti di sistemaG essenziali:

* gdal-bin e libgdal-dev - Librerie per la manipolazione di dati geospaziali;

* build-essential - Strumenti di compilazione per dipendenze native;

* librdkafka-dev - Libreria client KafkaG nativa richiesta da confluent-kafka.

– Variabili d’ambiente - Configura GDAL per la corretta compilazione delle estensioni PythonG;

– Dipendenze PythonG - Installa i pacchetti PythonG necessari da requirements.txt:

* geopy - Geocodifica e calcoli di distanza;

* osmnx - Accesso ai dati OpenStreetMap e manipolazione di grafi stradali;

* gpxpy - Parsing e generazione di file GPX;

* confluent kafka - Client KafkaG per la pubblicazione dei messaggi;

* scikit-learn - Algoritmi di machine learning per simulazione avanzata;

* clickhouse-connect - Client per la connessione al databaseG ClickhouseG.

� Disponibilità:

– profiles: ["test","develop","prod"] - Il servizio è attivato in tutti gli ambienti (test,
sviluppo e produzione), evidenziando il suo ruolo essenziale nell’architettura dell’applicazione.

5.1.1.7 Flink Service

� Descrizione: Implementa un motore di elaborazione di stream in tempo reale basato su Apache
FlinkG che processa i dati di posizione provenienti da KafkaG, li arricchisce con informazioni
contestuali e genera messaggi pubblicitari personalizzati. Rappresenta il cuore computazionale
dell’applicazione, realizzando la logica di business principale;

� Configurazioni:

– container name: flink - Nome esplicito assegnato al containerG per facilitarne l’identificazione;

– build: ./FlinkProcessor - Specificazione della directory che contiene il Dockerfile e il
codice sorgente dell’applicazione FlinkG;

– volumes - Configurazione dei volumi:

* .env:/app/.env - Monta il file di variabili d’ambiente nella directory dell’applicazione,
consentendo l’accesso a chiavi APIG e altre configurazioni sensibili.

– restart: on-failure:5 - Politica di riavvio che tenta di riavviare il containerG fino a 5
volte in caso di errore;

76

SPECIFICA TECNICA v1.0.0

– deploy - Configurazioni di deployment:

* resources.limits.cpus: ’4.00’ - Limita l’utilizzo della CPU a 4 core;

* resources.limits.memory: 4G - Limita l’utilizzo della memoria a 4 GB.

– depends on - Dipendenze del servizio:

* kafka: condition: service healthy - Attende che il servizio KafkaG sia completa-
mente funzionante prima di avviare l’elaborazione.

� Dockerfile specifico:

– FROM apache/flink:1.18.1-scala 2.12-java11 - Utilizza l’immagine base di Apache FlinkG
ufficiale con Java 11 e Scala 2.12;

– Ambiente PythonG - Installa PythonG 3 e pip per supportare PyFlink:

* apt-get install python3 python3-pip python3-dev - Installa l’ambiente PythonG;

* ln -s /usr/bin/python3 /usr/bin/python - Crea un symlink per rendere PythonG 3
il default.

– Dipendenze PythonG - Installa le dipendenze PythonG dal file requirements.txt:

* PyFlink - APIG PythonG per Apache FlinkG;

* clickhouse-connect - Client per la connessione al databaseG ClickhouseG;

* langchain e langchain-groq - FrameworkG per l’integrazione di modelli linguistici;

* python-dotenv - Gestione delle variabili d’ambiente;

* pydantic - Validazione e serializzazione dei dati.

– Connettori FlinkG - Scarica e installa i connettori Java necessari:

* flink-sql-connector-kafka - Connettore per integrare KafkaG con FlinkG;

* clickhouse-jdbc - Driver JDBC per ClickhouseG;

* flink-connector-jdbc - Connettore JDBC generico per FlinkG.

– WORKDIR /app - Imposta la directory di lavoro all’interno del containerG;

– CMD ["python", "main.py"] - Comando di avvio che esegue lo script principale dell’applicazione.

� Disponibilità:

– profiles: ["test","develop","prod"] - Il servizio è attivato in tutti gli ambienti (test,
sviluppo e produzione), evidenziando il suo ruolo fondamentale nell’architettura dell’applicazione.

5.1.1.8 Test Service

� Descrizione: Implementa un servizio dedicato all’esecuzione automatizzata dei testG dell’applicazione,
includendo testG unitari, di integrazione e di sistemaG. Fornisce un ambiente isolato ma completo
per verificare il corretto funzionamento di tutti i componenti e la loro interazione, generando report
dettagliati sulla copertura e qualità del codice;

� Configurazioni in docker-compose:

– container name: test - Nome esplicito assegnato al containerG per facilitarne l’identificazione;

– build - Configurazione della buildG dell’immagine DockerG:

* context: ./ - Utilizza la directory root del progettoG come contesto per la buildG;

* dockerfile: Tests/Dockerfile - Specifica il Dockerfile da utilizzare, situato nella di-
rectory Tests.

– volumes - Configurazione dei volumi (commentata, ma disponibile per l’attivazione):

* ./.github/reports:/app/reports:rw - Montaggio della directory dei report per l’integrazione
con CI/CD.

– depends on - Dipendenze del servizio:

* kafka: condition: service healthy - Attende che il servizio KafkaG sia completa-
mente funzionante prima di eseguire i testG.

77

SPECIFICA TECNICA v1.0.0

� Dockerfile specifico:

– FROM apache/flink:1.18.1-scala 2.12-java11 - Utilizza l’immagine base di Apache FlinkG
per garantire compatibilità con l’ambiente di produzione;

– WORKDIR /app - Imposta la directory di lavoro all’interno del containerG;

– Configurazione delle dipendenze FlinkG:

* Scarica e installa i connettori Java necessari: KafkaG, ClickhouseG JDBC, e JDBC gener-
ico.

– Struttura delle directory di testG:

* Crea struttura di directory per i moduli SimulationModule, FlinkProcessor, IntegrationTests
e SystemTests;

* Copia i file di configurazione dei testG: .coveragerc, pylintrc, pytest.ini.

– Ambiente PythonG:

* Installa PythonG 3, pip e le dipendenze necessarie da requirements.txt;

* Installa strumenti specifici per i testG: pytest, pytest-cov, coveralls, pylint.

– Preparazione e configurazione dei report:

* Crea directory per i report (/app/reports) con permessi appropriati.

� Funzionalità di testG:

– Analisi statica - Esecuzione di pylint per verificare la qualità del codice:

* Utilizza configurazione personalizzata dal file pylintrc;

* Genera report in formato parseable per l’integrazione con CI/CD.

– Test unitari e di integrazione - Esecuzione di pytest con varie opzioni:

* TestG per SimulationModule, FlinkProcessor e IntegrationTests;

* Misurazione della copertura del codice con analisi dei branchG;

* Generazione di report XML per la copertura.

– Generazione di report - Esecuzione dello script getReports.py che probabilmente formatta
o aggrega i risultati dei testG per facilitarne la lettura.

� Disponibilità:

– profiles: ["test"] - Il servizio è attivato solo nell’ambiente di testG, evidenziando la
sua funzione specifica per la verifica della qualità del codice piuttosto che per l’operatività
dell’applicazione.

5.1.2 Dipendenze tra componenti

Le interazioni tra i vari componenti avvengono attraverso KafkaG, che garantisce l’invio e la ricezione di
messaggi in modo affidabile e resiliente.

� Generazione di dati:

– Container sensor-simulator:

. Esegue il simulatore dei sensori di posizione degli utenti;

. Implementa diverse strategie di movimento per generare dati realistici;

. Produce dati nel formato JSONG definito e li invia al brokerG KafkaG.

� Gestione messaggi:

– Container kafkaG:

. Esegue Apache KafkaG per la gestione del flusso di dati in tempo reale;

. Gestisce i topicG dedicati per i diversi tipi di messaggi (posizioni, PoIG, messaggi pubblic-
itari);

. Accessibile agli altri containerG tramite l’indirizzo kafkaG:9092.

78

SPECIFICA TECNICA v1.0.0

– Componenti di supporto:

. Container zookeeper:

- Esegue il servizio di coordinamento per KafkaG;

- Gestisce lo stato distribuito del sistemaG;

- Accessibile dagli altri containerG attraverso l’indirizzo zookeeper:2181.

. Container kafka-ui:

- Fornisce un’interfaccia web per il monitoraggio e la gestione di KafkaG;

- Espone la porta 8080 per accedere alla dashboardG di amministrazione.

� Elaborazione dei dati:

– Container flink-jobmanager:

. Coordina l’esecuzione dei job di elaborazione dati in tempo reale;

. Gestisce l’allocazione delle risorse e la pianificazione dei task;

. Espone la porta 8081 per l’interfaccia di amministrazione.

– Container flink-taskmanager:

. Esegue i task di elaborazione dati assegnati dal jobmanager;

. Implementa gli algoritmi di proximity detection per identificare punti di interesse rilevanti;

. Integra il servizio LLMG per la generazione di messaggi pubblicitari personalizzati.

� Storage:

– Container clickhouseG:

. Esegue ClickhouseG come databaseG column-oriented ad alte prestazioni;

. Memorizza i dati degli utenti, posizioni, punti di interesse e messaggi pubblicitari;

. La banca dati è accessibile agli altri containerG tramite l’indirizzo clickhouseG:8123 e 9000.

� Visualizzazione:

– Container grafanaG:

. Esegue GrafanaG come piattaforma di visualizzazione e monitoraggio;

. Offre dashboardG interattive per l’analisi dei dati di posizione e messaggi pubblicitari;

. Espone la porta 3000 all’esterno per permettere l’accesso alle dashboardG;

. Consente l’integrazione con vari datasource per la visualizzazione dei dati.

5.2 Continuous Integration

� Descrizione e approccio: Il progettoG implementa una robusta pipeline di Continuous-integrationG
(CI) basata su Github-actionsG, progettata per automatizzare il testing, la valutazione della qualità
del codice e la generazione di report dettagliati ad ogni push sul branchG principale o apertura di
pull-requestG. Questo approccio integrato garantisce che ogni modifica al codebase venga rigorosa-
mente verificata prima dell’integrazione, mantenendo elevati standard qualitativi durante tutto il
ciclo di sviluppo.

� Workflow e automatizzazione:

– La pipeline CI viene attivata automaticamente in risposta a eventi GitG specifici (come push
su main e pull-requestG), creando un ciclo di feedbackG immediato per gli sviluppatori;

– L’intero stack applicativo viene costruito in un ambiente isolato utilizzando Docker-composeG
con il profilo ”test”, garantendo che i testG vengano eseguiti in un ambiente identico a quello
di produzione;

– I containerG vengono orchestrati per eseguire in sequenza, con controlli di dipendenza che
assicurano che componenti come KafkaG e ClickhouseG siano completamente inizializzati prima
dell’esecuzione dei testG;

– Al completamento dei testG, i report vengono estratti dal containerG e archiviati come artefatti
permanenti del repositoryG, creando una cronologia consultabile dell’evoluzione qualitativa del
progettoG.

79

SPECIFICA TECNICA v1.0.0

� Misure di qualità e reporting:

– Il sistemaG genera e traccia metriche complete sulla qualità del codice, tra cui:

* Copertura dei testG (sia a livello di linee che di branchG) con report in formato XML
compatibile con servizi esterni come Coveralls;

* Analisi statica tramite pylint con regole personalizzate definite in un file di configurazione
dedicato;

* Metriche di complessità del codice come fan-in, fan-out, numero di attributi, parametri e
lunghezza delle funzioni, visualizzate attraverso grafici generati automaticamente.

– I risultati vengono visualizzati dinamicamente nel README del progettoG attraverso badge
aggiornati ad ogni esecuzione, fornendo un’istantanea immediata dello stato del progettoG;

– L’integrazione con servizi esterni come Coveralls consente il monitoraggio delle tendenze nel
tempo e il confronto con benchmark di settore.

� Trasparenza e comunicazione:

– I report generati non sono solo archiviati ma anche visualizzati attraverso grafici che eviden-
ziano l’evoluzione delle metriche nel tempo, facilitando l’identificazione di trend e potenziali
problemi;

– Questi grafici vengono automaticamente aggiornati e inseriti nel repositoryG, creando una
documentazioneG visiva accessibile a tutti i membri del team;

– I badge nel README forniscono un’indicazione immediata della salute del progettoG, in-
centivando il mantenimento di standard elevati e facilitando la comunicazione dello stato del
progettoG a stakeholderG tecnici e non.

� Integrazione con il processoG di sviluppo:

– La CI è progettata per integrarsi perfettamente con il flusso di lavoro Git-flow adottato dal
team, fornendo feedbackG immediato sulle pull-requestG;

– I risultati dei testG diventano parte della documentazioneG delle pull-requestG, facilitando il
processoG di code review e la decisione sull’approvazione delle modifiche;

– L’automazione della generazione e del commit dei report riduce il carico manuale sul team,
consentendo agli sviluppatori di concentrarsi sulla risoluzione dei problemi piuttosto che sulla
loro documentazioneG.

� Sicurezza e gestione delle credenziali:

– La pipeline utilizza i segreti di GithubG per gestire in modo sicuro token sensibili come quello
di Coveralls, garantendo che le credenziali non vengano esposte;

– L’utilizzo di un’identità bot per i commit generati automaticamente (github-actions[bot])
permette di distinguere chiaramente tra modifiche manuali e automatiche nella cronologia del
repositoryG.

� Estensibilità e manutenzione:

– La struttura modulare del workflow facilita l’aggiunta di nuovi strumenti di analisi o la modifica
di quelli esistenti senza richiedere una riprogettazione completa;

– Lo script createCharts.py è progettato per elaborare i report generati e produrre visualiz-
zazioni significative, con la possibilità di estendere facilmente l’analisi a nuove metriche;

– La generazione automatica di badge tramite readmeBadges.py può essere facilmente adattata
per includere nuovi indicatori di qualità man mano che evolvono le esigenze del progettoG.

5.3 Vantaggi dell’architettura containerizzata

Questa struttura containerizzata permette una distribuzione modulare e scalabile del sistemaG, semplifi-
cando la gestione e la manutenzione dei componenti e consentendo una rapida scalabilità in risposta alle
esigenze emergenti. Grazie all’uso di DockerG, si garantisce:

80

SPECIFICA TECNICA v1.0.0

� Isolamento: Ogni componente opera nel proprio ambiente isolato, riducendo le interferenze tra
servizi;

� Portabilità: L’applicazione può essere eseguita su qualsiasi piattaforma che supporti DockerG;

� Portabilità della configurazione: Grazie al compose di DockerG si possono definire delle cartelle
o dei file di configurazione per ogni containerG, rendendo il sistemaG facilmente replicabile;

� Scalabilità orizzontale: I containerG possono essere facilmente replicati per gestire carichi mag-
giori;

� Gestione dichiarativa: La configurazione dell’intero ambiente è definita nel file docker-compose.yml;

� Efficienza delle risorse: Ogni containerG riceve solo le risorse necessarie per il suo funzionamento.

5.4 Comunicazione tra container

La comunicazione tra i vari containerG avviene principalmente attraverso il networking interno di DockerG,
con KafkaG che agisce come backbone di messaggistica centrale del sistemaG. Questa architettura event-
driven garantisce:

� Disaccoppiamento: I componenti possono evolvere indipendentemente, purché mantengano l’interfaccia
di comunicazione;

� Persistenza dei messaggi: I dati vengono memorizzati in KafkaG e copiati subito dopo su una
tabella ClickhouseG, garantendo la storicizzazione del dato.

5.5 Orchestrazione e gestione

Per la gestione dei containerG in ambiente di produzione, sono state implementate le seguenti strategie:

� Health checks: Ogni containerG è configurato con controlli di integrità che verificano periodica-
mente il corretto funzionamento del servizio;

� Gerarchia di avvio dei containerG: I containerG vengono avviati in un ordine specifico per
garantire che le dipendenze siano soddisfatte prima di avviare i servizi che ne fanno uso.

5.6 Evoluzione futura

L’architettura di deployment containerizzato con la sua separazione degli ambienti offre facile implemen-
tazione di future evoluzioni del sistemaG, tra cui:

� Migrazione verso Kubernetes: L’attuale configurazione DockerG è pronta per essere eventual-
mente trasferita su un orchestratore come Kubernetes per una gestione più avanzata dei containerG;

� Implementazione di auto-scaling: Aggiunta di meccanismi per scalare automaticamente i servizi
in base al carico;

� Monitoraggio: C’è la possibilità di integrare strumenti di monitoraggio avanzati per analizzare le
performance e il comportamento del sistemaG in tempo reale.

81

SPECIFICA TECNICA v1.0.0

6 Stato dei requisiti funzionali

La presente sezione fornisce una visione d’insieme dello stato di avanzamento dei requisiti funzionali
identificati durante la fase di analisi. I requisiti funzionali sono stati classificati in base alla loro importanza
(obbligatori, desiderabili e opzionali) come definito nel documento Analisi dei Requisiti v2.0.0.

6.1 Riepilogo dei requisiti

Durante la fase di analisi sono stati individuati 29 requisiti funzionali (RF01-RF29), di cui:

� 27 requisiti obbligatori;

� 0 requisiti desiderabili;

� 2 requisiti opzionali.

I requisiti funzionali riguardano principalmente:

� La visualizzazione della DashboardG e dei markerG sulla mappa;

� La gestione e visualizzazione dei punti di interesse;

� La gestione e visualizzazione degli utenti;

� La visualizzazione degli annunci pubblicitari generati;

� La trasmissione e gestione dei dati geoposizionali.

6.2 Tabella dei requisiti funzionali

Id. RequisitoG Importanza Descrizione Stato

RF01 Obbligatorio

L’utente privilegiato deve poter
visualizzare la DashboardG composta
da una mappa interattiva con i vari
MarkerG su di essa.

Implementato

RF02 Obbligatorio

L’utente privilegiato deve poter
visualizzare dei MarkerG che
rappresentano i vari Percorsi effettuati
in tempo reale dagli utenti presenti nel
SistemaG

Implementato

RF03 Obbligatorio

L’utente privilegiato deve poter
visualizzare un MarkerG che
rappresenta un PercorsoG effettuato in
tempo reale da un utente presente nel
SistemaG

Implementato

RF04 Obbligatorio
L’utente privilegiato deve poter
visualizzare tutti i punti di interesse
riconosciuti dal SistemaG.

Implementato

RF05 Obbligatorio

L’utente privilegiato deve poter
visualizzare un MarkerG che
rappresenta un punto di interesse
riconosciuto dal SistemaG.

Implementato

RF06 Obbligatorio

L’utente privilegiato deve poter
visualizzare gli annunci pubblicitari
provenienti da un determinato punto
di interesse.

Implementato

82

SPECIFICA TECNICA v1.0.0

RF07 Obbligatorio
L’utente privilegiato deve poter
visualizzare un singolo annuncio
pubblicitario tramite un MarkerG.

Implementato

RF08 Obbligatorio

L’utente privilegiato deve poter
visualizzare una DashboardG relativa
ad un singolo utente quando seleziona
un MarkerG utente nella DashboardG
principale.

Implementato

RF09 Obbligatorio

L’utente privilegiato deve poter
visualizzare dei MarkerG che
rappresentano lo storico delle posizioni
dell’utente a cui è riferita la
DashboardG di singolo utente.

Implementato

RF10 Obbligatorio

L’utente privilegiato deve poter
visualizzare un MarkerG che
rappresenta la posizione dell’utente in
un determinato istante nella
DashboardG di singolo utente.

Implementato

RF11 Obbligatorio

L’utente privilegiato deve poter
visualizzare, nella DashboardG di
singolo utente, tutti i punti di interesse
riconosciuti dal SistemaG.

Implementato

RF12 Obbligatorio

L’utente privilegiato deve poter
visualizzare, nella DashboardG di
singolo utente, un MarkerG che
rappresenta un punto di interesse
riconosciuto dal SistemaG.

Implementato

RF13 Obbligatorio

L’utente privilegiato deve poter
visualizzare lo storico degli annunci
pubblicitari generati per l’utente a cui
è riferita la DashboardG singolo
utente.

Implementato

RF14 Obbligatorio

L’utente privilegiato deve poter
visualizzare un singolo annuncio
pubblicitario tramite un MarkerG nella
DashboardG di singolo utente.

Implementato

RF15 Obbligatorio

L’utente privilegiato deve poter
visualizzare un pannelloG apposito
contenente le informazioni dell’utente,
a cui è riferita la DashboardG di
singolo utente, in forma tabellare.

Implementato

RF16 Obbligatorio

L’utente privilegiato deve poter
visualizzare nel pannelloG apposito di
visualizzazione informazioni
dell’utente: il nome, il cognome,
l’email, il genere, la data di nascita e
lo stato civile.

Implementato

RF17 Obbligatorio

L’utente privilegiato deve poter
visualizzare i dettagli del MarkerG
riguardante una singola posizione di
un utente nella rispettiva DashboardG

Implementato

83

SPECIFICA TECNICA v1.0.0

RF18 Obbligatorio

L’utente privilegiato quando visualizza
i dettagli del MarkerG, riguardante
una singola posizione di un utente
nella rispettiva DashboardG, deve
poter vedere la latitudine, la
longitudine e l’istante di rilevamento
del MarkerG

Implementato

RF19 Opzionale
L’utente privilegiato deve poter
visualizzare l’area di influenza di un
punto di interesse selezionato.

Da
implementare

RF20 Obbligatorio

L’utente privilegiato deve poter
visualizzare le informazioni dettagliate
di un punto di interesse quando
selezionato.

Implementato

RF21 Obbligatorio

L’utente privilegiato quando visualizza
le informazioni dettagliate di un punto
di interesse deve poter visualizzare la
latitudine, la longitudine, il nome, la
tipologia e la descrizione del punto di
interesse.

Implementato

RF22 Opzionale

L’utente deve poter visualizzare
l’annuncio pubblicitario proveniente
dal punto di interesse situato nell’area
che sta attraversando.

Da
implementare

RF23 Obbligatorio

L’utente privilegiato deve poter
visualizzare una tabella contenente le
informazioni dei singoli PoIG ordinati
per la quantità di messaggi inviati nel
mese.

Implementato

RF24 Obbligatorio

L’utente privilegiato deve poter
visualizzare nella tabella dei PoIG un
singolo PoIG, rappresentato da una
riga della tabella.

Implementato

RF25 Obbligatorio

L’utente privilegiato deve poter
visualizzare in ogni riga della tabella
dei PoIG il nome, l’indirizzo, la
tipologia (di che ambito si occupa), la
descrizione e il numero di messaggi
inviati durante il mese di un singolo
PoIG.

Implementato

RF26 Obbligatorio
L’utente privilegiato deve poter
visualizzare i dettagli di un annuncio
generato.

Implementato

RF27 Obbligatorio

L’utente privilegiato quando visualizza
i dettagli di un annuncio deve poter
visualizzare la latitudine, la
longitudine, l’istante di creazione, il
nome dell’utente coinvolto, il nome del
punto di interesse coinvolto e il
contenuto dell’annuncio.

Implementato

84

SPECIFICA TECNICA v1.0.0

RF28 Obbligatorio
Il sensore deve essere in grado di
trasmettere i dati rilevati in tempo
reale al SistemaG.

Implementato

RF29 Obbligatorio
Il sensore deve essere in grado di
trasmettere il proprio id, la sua
latitudine e longitudine al SistemaG.

Implementato

6.3 Stato di implementazione

Lo stato di implementazione dei requisiti funzionali è rappresentato nella seguente tabella:

Tipo di
requisitoG

Totale Implementati
In implemen-

tazione
Da

implementare

Obbligatori 27 27 0 0

Desiderabili 0 0 0 0

Opzionali 2 0 0 2

Totale 29 27 0 2

Table 4: Stato di implementazione dei requisiti funzionali

Implementati 100%

Figure 10: Stato dei requisiti funzionali obbligatori

85

SPECIFICA TECNICA v1.0.0

Implementati

93.1%

Da implementare
6.9%

Figure 11: Stato dei requisiti funzionali totali

6.4 Riepilogo e Conclusioni

L’analisi aggiornata dello stato dei requisiti funzionali indica un completamento quasi totale delle fun-
zionalità richieste. Con il 93.1% dei requisiti funzionali totali implementati, il progettoG ha raggiunto
un traguardo significativo. Per quanto riguarda i requisiti obbligatori, l’implementazione è completa al
100%.
Attualmente, nessun requisitoG è in fase di implementazione. I soli requisiti ancora da implementare sono
i 2 requisiti opzionali. Il completamento di tutti i requisiti obbligatori fornisce una base estremamente
solida per la consegna finale, mentre il sistemaG di testG definito continuerà a garantire la qualità del
prodotto finale in vista dell’implementazione dei requisiti opzionali rimanenti.

86

	Introduzione
	Scopo del documento
	Glossario
	Riferimenti
	Riferimenti normativi
	Riferimenti informativi

	Tecnologie
	Panoramica tecnologica
	Linguaggi di programmazione
	Python
	Specifiche
	Ruolo nel progetto
	Dipendenze

	SQL
	Specifiche
	Ruolo nel progetto

	Formati di interscambio dati
	YAML
	Specifiche
	Ruolo nel progetto
	JSON
	Specifiche
	Ruolo nel progetto

	Infrastruttura e servizi
	Apache ZooKeeper
	Specifiche
	Ruolo nel progetto

	Apache Kafka
	Specifiche
	Ruolo nel progetto

	Apache Flink
	Specifiche
	Ruolo nel progetto

	ClickHouse
	Specifiche
	Ruolo nel progetto

	Grafana
	Specifiche
	Ruolo nel progetto

	Docker
	Specifiche
	Ruolo nel progetto

	Architettura logica
	Pattern di architettura-esagonale
	Servizi principali e loro componenti

	Architettura del Sistema
	Panoramica architetturale
	K-Architecture: Event Streaming Platform
	Motivazioni della scelta architetturale
	Componenti principali

	Integrazione Architettura logica e Architettura di sistema
	Descrizione
	Mappatura dei componenti

	Dataflow
	Implementazione tecnica dei componenti principali
	DataSource - Simulation Service
	Diagramma della classi
	Design Pattern - Strategy Pattern
	Design Pattern - Factory Pattern
	Design Pattern - Adapter Pattern

	Classi, interfacce, metodi e attributi
	SensorSimulationAdministrator
	SensorSubject
	GpsSensor
	GeoPosition
	IPositionSimulationStrategy
	BycicleSimulationStrategy
	GraphWrapper
	SensorFactory
	UserSensorService
	IUserRepository
	UserRepository
	UserDTO
	ISensorRepository
	SensorRepository
	SensorDTO
	DatabaseConnection
	DatabaseConfigParameters
	IJsonSerializable
	PositionJsonAdapter
	PositionSender
	KafkaConfluentAdapter
	KafkaConfigParameters

	Streaming Layer - Apache Kafka
	Topic e partitioning
	Producer e Consumer
	Integrazione con Flink keyed stream
	Schema topic simulator position
	Schema message elaborated
	Kafka poisoning

	Processing Layer - PositionToMessageProcessor
	Apache Flink
	Diagrammi delle classi
	Design Pattern - Adapter Pattern
	Design Pattern - Strategy Pattern
	Classi, interfacce, metodi e attributi:
	FlinkJobManager
	IMessageWriter
	KafkaMessageWriter
	JsonRowSerializationAdapter
	KafkaWriterConfiguration
	IPositionReceiver
	KafkaPositionReceiver
	JsonRowDeserializationAdapter
	KafkaSourceConfiguration
	FilterMessageValidator
	PositionToMessageProcessor
	LLMService
	CustomPrompt
	StructuredResponseMessage
	GroqLLMService
	IActivityRepository
	ClickhouseActivityRepository
	ActivityDTO
	IUserRepository
	ClickhouseUserRepository
	UserDTO
	IMessageRepository
	ClickhouseMessageRepository
	MessageDTO
	DatabaseConnection
	DatabaseConfigParameters
	IFlinkSerializable
	MessageSerializer
	FilterMessageAlreadyDisplayed

	ClickHouse
	Architettura MergeTree
	Schema del database

	Grafana
	Utenti
	Dashboards
	Dashboard generale
	Querying Clickhouse
	Variabili dashboard
	Trasformazioni e array interessi
	Connettore Clickhouse
	Provisioning automatico

	Best practices architetturali
	PEP8 - Stile di codifica Python
	Principi SOLID
	Dependency Injection

	Implementazione nel FlinkProcessor

	Architettura di deployment
	Panoramica dell'infrastruttura
	Ambiente Docker dei Componenti Principali
	Zookeeper Service
	Kafka Service
	Kafdrop Service
	Grafana Service
	ClickHouse Service
	Position Simulator Service
	Flink Service
	Test Service

	Dipendenze tra componenti

	Continuous Integration
	Vantaggi dell'architettura containerizzata
	Comunicazione tra container
	Orchestrazione e gestione
	Evoluzione futura

	Stato dei requisiti funzionali
	Riepilogo dei requisiti
	Tabella dei requisiti funzionali
	Stato di implementazione
	Riepilogo e Conclusioni

